Q:
\( \lim _ { x \rightarrow 45 ^ { \circ } } 4 \operatorname { Coseno } ( 5 x ) = \)
Q:
graph :-
\( f(x)=2-3 \cos \left(\frac{x}{2}\right) \)
Q:
3. Déduis-en la solution de \( \left(E_{1}\right) \) tel que :
\( \forall x \in\left[0 ; 2 \pi\left[,-4 \cos ^{2} x+2(\sqrt{3}-\sqrt{2}) \cos x-\sqrt{6}=0\right.\right. \)
Q:
4. Résous de façon analogue l'équation:
\( \forall x \in\left[0 ; 2 \pi\left[,-4 \sin ^{2} x+2(\sqrt{3}-\sqrt{2}) \sin x-\sqrt{6}+4=0\right.\right. \)
Q:
Simplify: \( \frac{(\sec x-\tan x)(\sec x+\tan x)}{\tan x} \)
Q:
\( \cos ^ { 2 } ( 45 ^ { \circ } - A ) - \sin ^ { 2 } ( 45 ^ { \circ } - A ) \)
Q:
\( \cos ^ { - 1 } ( - x ) = \overline { x } - \cos ^ { - 1 } x \)
Q:
4 Demostar que \( \frac{\operatorname{cotag} x}{\sec x}=\operatorname{cosec} x-\operatorname{sen} x \)
Q:
Prove the following:
\( \sin ^{-1} \frac{5}{13}+\sin ^{-1} \frac{7}{25}=\cos ^{-1} \)
Q:
\( 2 \sin ^ { 2 } ( 45 ^ { \circ } - A ) \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit