Q:
Nite the expression below in surd form and rationalize the denominator
\[ \frac{1-\cos 60^{\circ}}{1+\operatorname{tim} 30^{\circ}} \]
Q:
4) \( \operatorname{Si} \tan \Phi=\frac{\sqrt{6}}{3} \), donde \( \Phi \) ' es un ángulo agudo, calcular:
\( P=\sqrt{3} \operatorname{Sec} \Phi+\sqrt{2} \operatorname{Csc} \Phi \)
Q:
NIVEL: INTERMEDIO
3) En un trángulo rectángulo, siendo " \( \alpha \) " un ángulo agudo
se cumple que sen \( \alpha=\frac{5}{13} \) Calcular \( H=24 \) tana +3 .
4) Si tan \( \Phi=\frac{\sqrt{6}}{3} \), donde " \( \Phi \) " es un ángulo agudo, calcular
Q:
\( 3 \tan ^ { \circ } 30 ^ { \circ } - \operatorname { cosec } 60 ^ { \circ } + 5 \cot 45 ^ { \circ } \)
Q:
\( 3 + \operatorname { an } 30 ^ { \circ } - \operatorname { cosec } 60 ^ { \circ } + 5 \cot 45 ^ { \circ } \)
Q:
Determine the angle \( \theta \) which will maximise the moment \( M O \) of the 200 N
force about the shaft axis at \( O \). Also compute \( M O \).
Q:
Suppose that \( \alpha \) and \( \beta \) are angles given as follows: \( \sin \alpha=\frac{12}{13} \) and \( \alpha \) is an angle in quadrant 1.
\( \cos \beta=-\frac{4}{5} \) and \( \beta \) is an angle in quadrant 2. Compute the exact value of \( \sin (\alpha+\beta) \)
Q:
Convert the following angle to minutes and seconds.
\( 0.3^{\circ} \)
Q:
Change to decimal degree equivalents.
\( 13^{\circ} 39^{\prime} 41^{\prime \prime} \)
Q:
\begin{tabular}{l} Change to decimal degree equivalents. \\ \( 13^{\circ} 39^{\prime} 41^{\prime \prime} \) \\ \hline\end{tabular}
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit