girl-logo

Ask Questions

Trigonometry Questions & Answers

Q:
\( \begin{array}{rl}4.4 & 13 \cos \theta-5-0 \quad \theta \epsilon\left[180^{\circ} ; 360^{\circ}\right] \\ & \text { Determine: } \\ & 4.4 .1 \quad \sin \theta\end{array} \)
Q:
\( \begin{array}{rl}4.4 & 13 \cos \theta-5-0 \quad \theta \epsilon\left[180^{\circ} ; 360^{\circ}\right] \\ & \text { Determine: } \\ & 4.4 .1 \quad \sin \theta\end{array} \)
Q:
Modelación \( \begin{array}{l}5 \text { Halla las razones trigonométricas de un á } \\ 30^{\circ} \text { y de otro de } 60^{\circ} \text {. Para ello, toma un } \\ \text { equilátero de lado a y divídelo en dos po } \\ \text { sus alturas. }\end{array} \)
Q:
Modelación (5) Halla las razones trigonométricas de un á \( 30^{\circ} \) y de otro de \( 60^{\circ} \). Para ello, toma un equilátero de lado a y divídelo en dos po sus alturas.
Q:
Use the given information to find the exact value of each of the following. \( \begin{array}{lll}\text { a. } \boldsymbol{\operatorname { s i n }} 2 \theta & \text { b. } \boldsymbol{\operatorname { c o s } 2 \theta} & \text { c. } \boldsymbol{\operatorname { t a n } 2 \theta} 2 \theta \\ \sin \theta=\frac{3}{13}, \theta \text { lies in quadrant II }\end{array} \)
Q:
\( y = \frac { \operatorname { Tan } 2 x } { 1 - \operatorname { Cot } 2 x } \)
Q:
(1. Calcula las razones trigonométricas de los ángulos agudos de los triángulos rectángulos \( A B C \) tales que: a. \( m \propto A=90^{\circ}, b=10 \mathrm{~cm} \) y \( c=12 \mathrm{~cm} \)
Q:
Angle \( \theta \) is in standard position. If \( (8,-15) \) is on the terminal ray of angle \( \theta \), find the values of the trigonometric functions. \( \sin (\theta)= \) \( \cos (\theta)= \) \( \tan (\theta)= \) \( \csc (\theta)= \)
Q:
Is the work shown in the simplification below correct? Explain. \[ \begin{aligned} \frac{\csc (t)}{\sec (t)} & =\frac{1}{\cos (t)} \div \frac{1}{\sin (t)} \\ & =\frac{1}{\cos (t)} \cdot \frac{\sin (t)}{1} \\ & =\frac{1}{\sin (t)} \\ & =\tan (t)\end{aligned} \]
Q:
Solving a Real-World Problem A 26 -foot long ladder is leaning against a building at a \( 60^{\circ} \) angle with the ground. Which of the following equations can you use to found to the ne approximate height of the building? \( \csc \left(60^{\circ}\right)=\frac{26}{h} \) \( \csc \left(60^{\circ}\right)=\frac{h}{26} \) \( \sec \left(60^{\circ}\right)=\frac{26}{h} \) \( \sec \left(60^{\circ}\right)=\frac{h}{26} \)

Test your knowledge on Trigonometry!

Select the correct answer and check your answer

26 27 28 29 30 31 32 33 34 35
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text

Enter your question here…

By image
Re-Upload
Uploaded Files
xxxx.png0%
Submit
📸 STUDY CAN BE A REAL STRUGGLE
Why Not UpStudy It?
Select your plan below
Premium

You can enjoy

  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to answer and
    solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic
  • Limited Solutions