Q:
Graph the function.
\[ g(x)=-2 x^{2}+1 \]
Q:
(1) \( \begin{aligned}-0.65 x+0.35 x & =8.7 \\ 21 & =8.7\end{aligned} \)
Q:
Tim drives at an average speed of 80 km per hour for 3 hours 45 minutes.
Work out how many kilometres Tim drives.
Q:
2.2 Express the following in partial fractions
2.2.1 \( \frac{5 x-3}{x^{2}-3 x-4} \)
2.2.2 \( \frac{7 x-11}{(x-2)^{2}} \)
Q:
Solve for \( x \) in each:
\( \begin{array}{l}1.1 \\ (x-1)^{2}=\sqrt{16} \\ 1.2 \quad 3 x^{2}-5 x=14 \text { (correct to two decimal places) } \\ 1.3 \quad x-2=\sqrt{8-x} \\ 1.4 \quad x^{2}+5 x<-6 \\ 1.5 \quad(\sqrt{81})^{x+1}=81^{2 x} \\ 1.6 \quad \text { If } \frac{3}{2} \text { is one root of the equation } b x^{2}-x=3 \text {, determine } b \text { and the other root. }\end{array} \) (3) (4)
Q:
\begin{tabular}{r|l} & \( \begin{array}{l}\text { The system has no solution. } \\ \text { System } \mathrm{B}\end{array} \) \\ \( \begin{aligned}-3 x+y=3 \\ 3 x-y=3\end{aligned} \) & \( \begin{array}{l} \text { The system has a unique solution: } \\ \text { The system has infinitely many solutions. } \\ \text { They must satisfy the following equation: } \\ y=\square\end{array} \)\end{tabular}
Q:
в) \( \sqrt{x}=7 \)
Q:
Question
For the equation given below, one could use Newton's method as a way to approximate the solution. Find Newton's formula
as \( x_{n+1}=F\left(x_{n}\right) \) that would enable you to do so.
\[ \sin (x)=6 x-5 \]
Provide your answer below:
\( x_{n+1}=\square \)
Q:
Diketahui fungsi tujuan meminimumkan \( Z=x+5 y \)
dengan pembatas-pembatas sebagai berikut
\( x+y \leq 8 \)
\( 2 x-3 y \leq 6 \)
\( x \leq 5 \)
\( y \geq 1 \)
a. gambarkan daerah layak
b. tentukan Z minimum
Q:
10. Use any method to solve the system: \( \left\{\begin{array}{l}x^{2}+y^{2}=9 \\ y=3-x^{2}\end{array}\right. \)
Ask Tutors
Ask AI
10x
Fastest way to Get Answers & Solutions
By text
Enter your question here…
By image
Re-Upload
Submit