Calculus Questions from Dec 05,2024

Browse the Calculus Q&A Archive for Dec 05,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
28 Multiple Choice 1 point Evaluate this indefinite integral: \( \int \sqrt{ } x+(1) /(2 \sqrt{ } x) d x \) 1. Aplicando el criterio de la razón, determine si la serie dada, converge o diverge \( \sum_{n=0}^{\infty} \frac{4^{n}}{3^{n}+1} \) 2. Determine os limites a seguir: \( \begin{array}{ll}\text { a) } \lim _{x \rightarrow+\infty} \frac{3 x^{2}+5 x-4}{x^{3}+7 x} & \text { b) } \lim _{x \rightarrow-\infty} \frac{x^{5}+3 x^{2}+2 x}{x^{3}-7 x^{2}}\end{array} \) 25. Multiple Choice 1 point The function \( f \) has a first derivative given by \( f^{\prime}(x)=5 x^{4}-12 x^{2} \). Which of the following is one of the three \( x \) coordinates that are inflection points of the graph? 0 1.54919 The function fhas no inflection points -1.54919 25 Multiple Choice 1 point The function \( f \) has a first derivative given by \( f^{\prime}(x)=5 x^{4}-12 x^{2} \). Which of the following is one of the three \( x \) coordinates that are inflection points of the graph? Exercice 2 Soit \( g \) la fonction définie sur \( \mathbb{R} \backslash\{1\} \) par \( g(x)=\frac{e^{x}}{1-x} \). 1. Déterminer \( g^{\prime}(x) \), puis montrer que \( g^{\prime \prime} \) a pour expression \( g^{\prime \prime}(x)=\frac{e^{x}\left(x^{2}-4 x+5\right)}{(1-x)^{3}} \). 2. En déduire la convexité de \( g \) et les abscisses des éventuels points d'inflexion de la courbe de \( g \). 3. Déterminer une équation de la tangente à la courbe représentative de \( g \) au point d'abscisse 0 . 4. En déduire que, pour tout \( x<1 \), on a \( e^{x} \geqslant-2 x^{2}+x+1 \). 25 Multiple choice 1 point The function fhas a first derivative given by \( f^{\prime}(x)=5 x^{4}-12 x^{2} \). Which of the following is one of the three \( x \) coordinates that are inflection points of the graph? 0 1.54919 The function fhas no inflection points -1.54919 a) \( \lim _{x \rightarrow 3^{-}} f(x)= \) b) \( \lim _{x \rightarrow 3^{+}} f(x)= \) c) \( \lim _{x \rightarrow 3^{-}} f(x)= \) d) \( \lim _{x \rightarrow 5^{-}} f(x)= \) e) \( \lim _{x \rightarrow 5^{+}} f(x)= \) f) \( \lim _{x \rightarrow 5} f(x)= \) Let \( r \) be a function whose second derivative exists on an open interval I. Which of the following could be a true statement? \[ \text { If } f^{\prime \prime}(x)<0 \text { for all } x \text { in } I \text {, then the graph of } f \text { is concave upward. } \] \[ \text { If } f^{\prime \prime}(x)<0 \text { for all } x \text { in } I \text {, then the graph of } f \text { is neither concave up nor concave down. } \] If \( f^{\prime \prime}(x)<0 \) for all \( x \) in \( I \), then the graph of \( f \) is concave downward. 23 Multiple Choice 1 point The function \( f \) is continuous for \( -3 \leq x \leq 2 \) and differentiable for \( -3<x<2 \). If \( f(-3)=3 \), and \( f(2)=-2 \), which of the following statements could be false? There exists \( c \), where \( -3<c<2 \), such that \( f(c)=1 \) There exists \( c \), where \( -3<c<2 \), such that \( f^{\prime}(c)=-1 \) There exists \( c \), where \( -3<c<2 \), such that \( f^{\prime}(c)=6 \) There exists \( c \), where \( -3<c<2 \), such that \( f(c)=0 \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy