Calculus Questions from Dec 21,2024

Browse the Calculus Q&A Archive for Dec 21,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
A particle moves in a straight line such that its velocity v at the moment t is \( \mathrm{v}=\left(12-\frac{1}{2} \mathrm{t}^{2}\right) \mathrm{cm} . / \mathrm{sec} . \), if the particle starts its motion when it is at a distance 2 cm to the right of point \( (\mathrm{O}) \), find its distance from \( (\mathrm{O}) \) after 6 seconds from the starting of motion. The population of a certain species in a protected area can be modeled by the function \( P(t) = 200 + 50 \sin(t) \), where \( t \) is measured in years. Determine the total population increase over one complete cycle (from \( t=0 \) to \( t=2\pi \)). Exercise 3: (6pts) On cc nsidere la suite \( \left(U_{n}\right)_{n \in \mathbb{N}} \) et la fonction f definie par: \( \left\{\begin{array}{l}U_{0}=\frac{1}{2} \\ U_{n+1}=f\left(U_{n}\right) \quad \forall n \in \mathbb{N}\end{array}\right. \) 1) Etudier les variation de f om \( \left[0_{3}\right]_{(1,5 p t s)} \) (2) Montrer que \( : \forall n \in \mathbb{N}: 0<U_{n}<1 \) (3) Etudier les variation de la suite \( \left(U_{n}\right)_{n \in \mathbb{N}} \quad(1,5 \mathrm{pts}) \) (4) En deduire que la suite \( \left(U_{n}^{r}\right)_{n \in \mathbb{N}} \) estr convergente et calculer sa limite EXERCICE 4. Déterminer le produit de convolution des fonctions : \( f(x)=\left\{\begin{array}{rll}1 & \text { si } & 0 \leq x \leq 2 \\ 0 & \text { ailleurs }\end{array}, g(x)=\left\{\begin{array}{rr}x-1 & \text { si } 1 \leq x \leq 3 \\ 0 & \text { ailleurs }\end{array}\right.\right. \) 4. Найти \( d y \), если \( y=\arcsin e^{-x} \). 5. Исследовать функцию \( y=\frac{4 x}{(x+1)^{2}} \) и построить ге график. Desarrollo 1. Resuelve los siguientes ejercicios . \( -y^{\prime \prime}-8 y^{\prime}+20 y=100 x^{2}-26 x e^{x} \) \( 10 \quad \lim _ { x \rightarrow 0 } \frac { \sin 3 x } { x } \) n considere la fonction \( f \) définie pour tout rél \( x \) par: \( f(x)=\left(-3 x^{2}\right)+x-3 \). n donne \( f^{\prime}(-1)=7 \). éterminer une équation de la tangente à la courbe représentative de \( f \) au point d'abscisse -1 . ne équation de la tangente est On considère la fonction \( f \) définie pour tout réel \( x \) par: \( f(x)=x^{3}-3 x^{2}+5 x+4 \). On donne \( f^{\prime}(2)=5 \). Déterminer une équation de la tangente à la courbe représentative de \( f \) au point d'abscisse 2 . Une équation de la tangente est Evaluate \( \lim _{x \rightarrow 0} \frac{3^{x}-2^{x}}{4^{x}-3^{x}} \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy