Calculus Questions from Dec 30,2024

Browse the Calculus Q&A Archive for Dec 30,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
xercice 1 Soit A un nombre réel tel que : \[ A=\ln (2+\sqrt{2})+\ln (2+\sqrt{2+\sqrt{2}})+\ln (2-\sqrt{2+\sqrt{2}}) \] Montrer que: \( A=\ln 2 \) Calculer: \( \lim _{x \rightarrow+\infty} \frac{\ln (3 x+1)}{\ln x} \) a) Résoudre dans \( \mathbb{R} \) Céquation: (E): \( x^{2}-3 x+2=0 \) b) déduire les sofutions de Céquation \( \left(E_{1}\right): \ln ^{2}(x)-3 \ln (x)+2=0 \) c) déduire les solutions de Cinéquation \( (I): \ln ^{2}(x)-3 \ln (x)>-2 \) a) montrer que: \[ \forall x, y \in] 0 ;+\infty\left[, \frac{x+y}{2} \geq \sqrt{x y}\right. \] b) déduire que : \[ \forall x, y \in] 0 ;+\infty\left[, \quad \ln \left(\frac{x+y}{2}\right) \geq \frac{\ln x+\ln y}{2}\right. \] xercice \( 2^{\circ} \) Evaluate the following integral: \( \int x \sin \left(x^{2}+4\right) d x \) \( \ddot { y } - 2 y ^ { \prime } + y = x e ^ { x } \sin x \) \( f(x)=\int_{4}^{x} \frac{5}{t}+\cos (t) d t \) What is \( \frac{d f}{d x} ? \) Suppose that \( f(x)=\int_{2}^{x} \cos (t-2) d t \) What is \( f^{\prime}(x) ? \) Evaluate the following integrals by method of partial fractions \( \begin{array}{lll}\text { (a) } \int \frac{5 x+2}{3 x^{2}+x-4} d x & \text { (b) } \int \frac{x+1}{4 x^{2}-1} d x & \text { (c) } \int \frac{3 x}{1+x-2 x^{2}} d x\end{array} \) CHAPTER NINE: INTEGRAL CALCULUS 1. Evaluate the integrals \( \begin{array}{lll}\text { (a) } \int x^{2} \cos 2 x d x & \text { (b) } \int x^{4} e^{3 x} d x & \text { (c) } \int x^{4} \log (x+4) d x \\ \text { (d) } \int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x & \text { (e) } \int e^{2 x} \cos 4 x d x & \text { (f) } \int \sinh 7 x d x \\ \text { (g) } \int \sqrt{7 x-1} d x & \text { (h) } \int x(5 x+6)^{6} d x & \text { (i) } \int x^{2} \sqrt{x+1} d x \\ \begin{array}{lll}\text { (j) } \int x\left(5+x^{2}\right)^{8} d x & \text { (k) } \int x^{2} \sqrt{7-4 x^{3}} d x & \text { (k) } \int \cot x d x \\ \text { (l) } \int \frac{8 x^{3}+9 x^{2}-10 x+6}{2 x^{4}+3 x^{3}-5 x^{2}+6 x+1} d x & \text { (m) } \int \frac{x^{2}}{x^{3}+1} d x\end{array}\end{array} \). 1. Evaluate the integrals \( \begin{array}{lll}\text { (a) } \int x^{2} \cos 2 x d x & \text { (b) } \int x^{4} e^{3 x} d x & \text { (c) } \int x^{4} \log (x+4) d x \\ \text { (d) } \int \frac{\sin ^{-1} x}{\sqrt{1-x^{2}}} d x & \text { (e) } \int e^{2 x} \cos 4 x d x & \text { (f) } \int \sinh 7 x d x \\ \text { (g) } \int \sqrt{7 x-1} d x & \text { (h) } \int x(5 x+6)^{6} d x & \text { (i) } \int x^{2} \sqrt{x+1} d x \\ \text { (j) } \int x\left(5+x^{2}\right)^{8} d x & \text { (k) } \int x^{2} \sqrt{7-4 x^{3}} d x & \text { (k) } \int \cot x d x\end{array} \) \( \begin{array}{lll}\text { (l) } \int \frac{8 x^{3}+9 x^{2}-10 x+6}{2 x^{4}+3 x^{3}-5 x^{2}+6 x+1} d x & \text { (m) } \int \frac{x^{2}}{x^{3}+1} d x\end{array} \) Consider rectangles whose height is given by the value of \( f(x)=\frac{1}{x} \). Using the right-hand method and four intervals, what is the estimated area under the graph between \( x=1 \) and \( x=5 \) ? Round to the nearest hundredth, and use four intenvals. 1.24 Evaluate the integrals \[ \begin{array}{ll}\text { (a) } \int e^{-3 x} \cos 2 x d x & \text { (b) } \int \sin 5 x \cos 3 x d x\end{array} \text { (c) } \int \frac{2 x^{2}+x+1}{(x-1)\left(x^{2}+1\right)} d x \]
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy