Calculus Questions from Dec 31,2024

Browse the Calculus Q&A Archive for Dec 31,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
4. Let \( f(x)=\ln \left(x^{2}+1\right) \), then \( f^{\prime}(x)= \) Let \( f(x)=e^{x} \), then \( f^{n}(x)= \) The function \( f(x)=-2 x^{3}+a x^{2}+b x+c \) the turnig point of \( p(8,-9) \) and \( (5,18) \), then the value of \( a= \) and \( b= \). Which function satisfies the differential equation \( y^{\prime \prime}=-y \) What is the solution to the differential equation \( \frac{d y}{d x}+x y=x, y(0)=-6 ? \) What is the solution to the following differential equation, subject to the initial condition \( y(0)=2 \) ? \( \frac{d y}{d x}=6 x+6 \) What is the general solution to the following: \( \int 2 x \sin (x) d x \) ? Integrate the following: \( \int x e^{2 x} d x \) 20. \( \int x \tan ^{2} x d x \) Un objeto se mueve a lo largo de una línea y su aceleración está dada por \( a(t) = 12t \). Si en el tiempo inicial \( t=0 \) la velocidad es \( v(0)=4 \), encuentra la expresión para la velocidad. 4) If the function \( f: f(x)=\left\{\begin{array}{ll}\frac{\sin 2 x+\tan x}{1+\sin 4 x} & , x \in] 0, \frac{\pi}{3}\left[-\left\{\frac{\pi}{4}\right\}\right. \\ k & , x=\frac{\pi}{4}\end{array}\right. \) is continuous at \( x=\frac{\pi}{4} \), then \( k=\cdots \) \( \begin{array}{ll}\text { (a) } \frac{1}{2} & \text { (c) } 3\end{array} \) DEVELOPPEMENTS LIM EXERCICE I Calculer les développements limités de la fonctio 1) \( f(x)=\frac{1}{\sqrt{3-x}} \) à l'ordre 3 , au voisinage \( \left.2^{\circ}\right) f(x)=\sqrt{x} \), à l'ordre 3 , au voisinage de 2 \( \left.3^{\circ}\right) f(x)=\frac{\sqrt{x+2}}{\sqrt{x}} \), à l'ordre 3 , au voisinage 4) \( f(x)=\sqrt{1-x}+\sqrt{1+x} \), à l'ordre 4 , au \( \left.5^{\circ}\right) f(x)=(\ln (1+x))^{2} \), a lordre 4, au voisin 6) \( f(x)=\frac{1}{(x+1)(x-2)} \), à l'ordre 3 , au vo 7) \( f(x)=\frac{x^{2}+1}{x^{2}+2 x+2} \), à l'ordre 3 , au voisi 8) \( f(x)=\frac{\ln (1+x)}{1-x} \), à l'ordre 4 , au voisina 9) \( f(x)=\frac{\sin x}{x}-\frac{x}{e^{x}-1} \), à l'ordre.4, au v \( 10^{\circ} \) ) \( f(x)=\ln \left(\frac{1}{\cos x}\right) \), à l'ordre 4 , au vois 11.) \( f(x)=\operatorname{Arccos}\left(\frac{1+x}{2+x}\right) \), à l'ordre 2 , a 12.) \( f(x)=(1+\sin x)^{\cos x} \), à l'ordre 4, aul 13 ) \( f(x)=\operatorname{Artan} \sqrt{\frac{1+x}{2+x}} \), à l'ordre 2, au 14 ) \( f(x)=\operatorname{Argsh}\left(1+2 x+3 x^{2}\right) \), à l'ordr 15 ) \( f(x)=\sqrt{\tan x} \), à l'ordre 3 , au voisina EXERCICE II A l'aide des développements limités, calculer \[ \begin{array}{l} \lim _{x \rightarrow 0}\left(\frac{1}{x^{2}}-\frac{1}{(\operatorname{Arcin} x)^{2}}\right) \\ \lim _{x \rightarrow 0}\left(\frac{1}{x}-\frac{1}{\ln (1+x)}\right) \\ \lim _{x \rightarrow 0} \frac{\ln \left(\frac{1+x}{1-x}\right)}{\operatorname{Arctan}(1+x)-\operatorname{Arctan}(1-x))} \\ \lim _{x \rightarrow 0}\left(\frac{\sin x}{x}\right)^{\frac{1}{\sin x}} \quad \lim _{x \rightarrow 0} \frac{\sqrt{1+x}-\cos x}{\ln (1+x)} \end{array} \]
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy