Calculus Questions from Nov 01,2024

Browse the Calculus Q&A Archive for Nov 01,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
\( \frac { d ^ { 2 } y } { d x ^ { 2 } } - 9 y = 0 \) Consider the function \( f(x)=2 x^{2}-12 x-1 \). a. Determine, without graphing, whether the function has a minimum value or a maximum value. b. Find the minimum or maximum value and determine where it occurs. c. Identify the function's domain and its range. a. The function has a b. The minimum/maximum value is c. The domain of \( f \) is \( \square \). It occurs at \( x= \). Type your answer in interval notation.) The range of \( f \) is \( \square \). (Type your answer in interval notation.) \[ \quad \begin{array}{l}\text { Differentiate the function. } \\ y=(3 x-2)^{4}\left(1-x^{5}\right)^{2} \\ \underline{d y}=\square\end{array} \] un máximo local igual a 5 en \( x=-3 \) y un mínimo local igual a 0 en \( x=2 \). 2. Halle el valor de \( c \) de tal forma que la gráfica de \( f(x)=c x^{2}+\frac{1}{x^{2}} \) tenga un punto de inflexión en el punto \( (1, f(x)) \). A plane directly above Denver, Colorado, (altitude 1650 meters) flies to Bismark, North Dakota (altitude 550 meters). It travels at \( 700 \mathrm{~km} / \) hour along a line at 7250 meters above the line joining Donver and Bismark. Bismark is about 850 km in the direction \( 60^{\circ} \) north of east from Denver. Find parametric equations describing the plane's motion. Assume the origin is at sea level beneath Denver, that the \( x \)-axis points east and the \( y \)-axis points north, and that the earth is flat. Measure distances in kilometers and time in hours. \( \vec{r}(t)= \) Differentiate. \( g(x)=\frac{9 x-2}{2 x+3}+x^{3} \) Ejercicio 13. Calcular el área de la región limitada por los gráficos de \( f(x)=\sqrt{x-5} \), \( g(x)=\sqrt{5-x} \) y la recta \( y=2 \). 2) Dada la ecuación diferencial \( y^{\prime}=\frac{2 x}{y} \). Sabiendo que \( y(1)=2 \). Entonces: 33) Si \( y^{2}+2 x y=8 \), montrer que : \( (x+y) \frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+\left(\frac{d y}{d x}\right)^{2}=0 \) Encuentra una función vectorial que represente la curva de intersección del paraboloide. \( z=4 x^{2}+2 y^{2} y \) el cilindro \( y=2 x^{2} \). Utilice la variable t como parámetro. \( \mathrm{I}(t)=\langle t \), Nota: Puedes obtener credito parcial en este problema.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy