Calculus Questions from Nov 02,2024

Browse the Calculus Q&A Archive for Nov 02,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Califique con verdadero o falso las siguientes proposiciones. Justifique su respuesta. a) \( q \) : Si el punto \( P(4,5) \) es punto vacio de la gráfica de \( g \) entonces \( \lim _{v \rightarrow 4} g(v)=5 \). b) \( t: k \neq 0 \wedge a<0 \Longrightarrow 4 a k^{2}>5 a k^{2} \) c) i: Si \( G: G(t)=\frac{H(t)}{t+1} \), H es inpar y \( H(3)=11 \) entonces \( \left(-3, \frac{11}{2}\right) \in G \). 1. Given that \( \int \cos x d x=\sin x \) find a. \( \int \cos (2 x+1)= \) 2. Determine se a sequência é monótona e limitada. \( \begin{array}{llll}\text { a) }\left\{\frac{2 n-1}{4 n-1}\right\} & \text { d) }\left\{\frac{n^{3}-1}{n}\right\} & \text { g) }\left\{\frac{n!}{3^{n}}\right\} & \text { j) }\left\{\frac{n!}{1 \cdot 3 \cdot 5 \cdot 7 \ldots(2 n-1)}\right\} \\ \text { b) }\left\{\frac{1-2 n^{2}}{n^{2}}\right\} & \text { e) }\left\{\frac{1}{n+\operatorname{sen} n^{2}}\right\} & \text { h) }\left\{\frac{n^{n}}{n!}\right\} & \text { L) }\left\{\frac{1 \cdot 3 \cdot 5 \cdot 7 \ldots(2 n-1)}{2^{n} \cdot n!}\right\} \\ \text { c) }\{\operatorname{sen} n \pi\} & \text { f) }\left\{\frac{2^{n}}{1+2^{n}}\right\} & \text { i) }\left\{\frac{n}{2^{n}}\right\} & \text { m) }\left\{\frac{1 \cdot 3.5 \ldots . .(2 n-1)}{2 \cdot 4.6 .8 \ldots(2 n)}\right\}\end{array} \) tiven that \( \int \cos x d x=\sin x \) find (a) \( \int \frac{\cos (2 x+1)}{2} d x+c=\cos u \) (Ingreso marginal) si la ecuación de demanda es \( x^{\frac{3}{2}}+5 p=1000 \), Calcule elingreso marginal cuando \( p=16 \) 1). \( \int_{0}^{2} \int_{1}^{3}\left(x^{2} y-3\right) d y d x \) En los siguientes problemas use la inversa del segundo teorema d slación para encontrar la \( \mathcal{L}^{-1}\{F(s)\} \). F. \( F(s)=\frac{s e^{-\frac{n s}{2}}}{s^{2}+4} \) \( 2 y^{\prime \prime}-3 y^{\prime}-2 y=0, y(0)=0, y^{\prime}(0)=\frac{5}{2} \) el valor de \( Y(1) \) es A box with no top is to be made from a square piece of cardboard with side length 10 inches by cutting out squares from each corner and folding up the sides. If the side length of each cut square is x, what value of x maximizes the volume of the box? (Provide critical points for maximization.) Compute each sum below. Give exact values, not decimal approximations. If the sum does not exist, click on "No sum". \[ 4\left(-\frac{1}{4}\right)+4\left(-\frac{1}{4}\right)^{2}+4\left(-\frac{1}{4}\right)^{3}+\ldots=\prod \] \( \sum_{k=1}^{\infty} 2\left(-\frac{3}{5}\right)^{k}=\square \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy