Calculus Questions from Nov 02,2024

Browse the Calculus Q&A Archive for Nov 02,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
2. Encontrar los intervalos de crecimiento y decrecimiento de la función \( f(x)=\frac{x^{2}}{x-1} \) \( y ^ { \prime \prime } - 2 y ^ { \prime } + y = e ^ { x } + y = C _ { 1 } e ^ { x } + C _ { 2 } x e ^ { x } + \frac { x ^ { 2 } e ^ { x } } { 2 } \) Consider the function \( f(x)=-2 x^{2}+8 x-5 \). Determine, without graphing. whether the function has a minimum value or a maximum value. b. Find the minimum or maximum value and determine where it occurs. c. Identify the function's domain and its range. a. The function has a value. Consider the function \( f(x)=2 x^{2}-20 x-6 \). a. Determine, without graphing, whether the function has a minimum value or a maximum value. b. Find the minimum or maximum value and determine where it occurs. c. Identify the function's domain and its range. a. The function has a 28.The slope of the tangent at any point \( (x, y) \) on the curve \( y=f(x) \) is equal to \( 3 x^{2}-6 x-9 \) and the local maximum value of the function \( f \) is 17 , then the local minimum value of the function \( f \) equal \( \begin{array}{llll}\text { (a) }-17 & \text { (b) }-15 & \text { (c) } 7 & \text { (d) } 15\end{array} \) Ig. If the slope of the normal to the curve \( y=f(X) \) at any point on it is \( (2 y+1) \csc x \) if we know that the curve passes through the origin point, then its equation is \( \begin{array}{ll}\text { (a) } y^{2}+y=\sin x-1 & \text { (b) } y^{2}+y=\cos x-1 \\ \text { c) } y^{2}+y \csc y \cot y=0 & \text { (d) } y^{2}+y=(\sin x)^{-2}\end{array} \) 15. If slope of the tangent to the curve \( y=f(x) \) at any point on it equals \( \sec ^{2} x-\sin x \), the curve passes through the point \( \left(\frac{\pi}{4}, \frac{1}{\sqrt{2}}\right) \), then the equation is … \( \begin{array}{ll}\text { (a) } y=\frac{1}{3} \sec ^{3} x+\cos x-1 & \text { (b) } y=\tan x-\cos x-1 \\ \text { c } y=\tan x+\cos x-1\end{array} \) 12.If \( \hat{f}^{\prime}(X)=\frac{1}{2}\left[\mathrm{e}^{x}+\mathrm{e}^{-x}\right], f(0)=1, \grave{f}(0)=0 \), then \( f(x) \) equals \( \cdots \) \( \begin{array}{llll}\text { (a) }-f^{\prime}(x) & \text { (b) } f^{\prime}(x) & \text { (c) }-\stackrel{\rightharpoonup}{f}(x) & \text { (d) } \hat{f}^{\prime}(x)\end{array} \) \( R = - \frac { 4 } { 9 } x ^ { 3 } + 4 x ^ { 2 } + 6 , \quad 0 \leq x \leq 7 \) Find the point of diminishing returns for the function \( R=-\frac{4}{9} x^{3}+4 x^{2}+6, \quad 0 \leq x \leq 7 \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy