Calculus Questions from Nov 06,2024

Browse the Calculus Q&A Archive for Nov 06,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
b) \( \int\left(\frac{9 x^{4}}{6}-\frac{3 x^{3}}{7}+\frac{7 x^{2}}{5}-\frac{8 x}{9}+\frac{5}{8}\right) d x \) a. \( \quad f(x)=5 x \sqrt{25-x^{2}} \) find \( \frac{d y}{d x} \). \( \mathbb{T} y=e^{x^{x^{e}}}+e^{x^{e^{x}}} \) 4. a) Bestimmen Sie die Funktionsgleichung einer Funktion dritten Grades, deren Graph durch den Ursprung verläuft. Die Gleichung der Wendetangente an der Stelle \( x=2 \) lautet \( t(x)=-2 x+8 \). b) Bestimmen Sie die Funktionsgleichung einer Funktion dritten Grades, deren Graph die \( x \)-Achse an der Stelle \( x=-1 \) berührt und einen Extrempunkt \( E(1 \mid 1) \) aufweist. c) Bestimmen Sie die Funktionsgleichung einer ganzrationale Funktion möglichst niedrigen Grades, deren Graph punktsymmetrisch zum Koordinatenursprung ist und den Sattelpunkt S(1|1) hat. \( f(x)=x^{2}-x-1 \). On pose \( x_{0}=2 \). a. Résoudre l'équation \( x^{2}-x-1=0 \). On note \( \Phi \) la solution positive de cette équation. b. Montrer que pour tout entier naturel \( n \), on a: \( x_{n+1}=\frac{x_{n}^{2}+1}{2 x_{n}-1} \). c. Soit \( g \) la fonction définie sur \( [1 ;+\infty[ \) par \( g(x)=\frac{x^{2}+1}{2 x-1} \). Étudier les variations de la fonction \( g \). \( s = 2 \pi \int _ { 0 } ^ { 8 } x ^ { 1 / 3 } \sqrt { 1 + ( \frac { 1 } { 3 x ^ { 2 } / 3 } ) ^ { 2 } } \) \( s = 2 \pi \int _ { 0 } ^ { 8 } x ^ { 1 / 3 } \sqrt { 1 + ( \frac { 1 } { 3 x ^ { 2 } } ) ^ { 2 } } \) 89. Si \( f(x)=\sqrt{x}+\frac{1}{\sqrt{x}} \) evalúe la expresión \( \frac{x-1}{2 x \sqrt{x}}-f^{\prime}(x) \) 87. Encuentre todos los puntos sobre la curva \[ y=x^{2}-5 x+3 \] en los que la pendiente es 1. A rock is thrown into a still pond. The circular ripples move outward from the point of impact of the rock so that the radius of the circle formed by a ripple increases at the rate of 4 feet per second. Find the rate at which the area is changing at the instant the radius is 13 feet. When the radius is 13 feet, the area is changing at approximately \( \square \) square feet per second. (Round to the nearest thousandth as needed.)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy