Calculus Questions from Jan 16,2025

Browse the Calculus Q&A Archive for Jan 16,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
19 A particle \( P \) is moving along a straight line. The fized point \( O \) lies on this line. At time \( f \) seconds where \( f \geqslant 0 \), the displacement, s metres, of \( P \) from \( O \) is given by \[ s=t^{3}+5 t^{4}-9 t+10 \] Find the displacernent of \( P \) from \( O \) when \( P \) is instantancously at rest. Grve your answer in the form \( \frac{a}{b} \) where \( a \) and \( b \) are integers 2. On admet que \( g(x)=(x-1) e^{-x}+2 \) a) Démontrer que l'équation : \( x \in \mathbb{R}, g(x)=0 \) admet une solution unique noté \( \alpha \) b) Vérifier que \( -0,4<\alpha<-0,3 \) c) Démontrer que \( \left\{\begin{array}{l}\text { pour tout } x \in]-\infty ; a[; g(x)<0 \\ \text { pour tout } x \in] a ;+\infty[; g(x)>0\end{array}\right. \) Partie B On considère la fonction définie sur \( \mathbb{R} \) par \( f(x)=2 x-1-x e^{-x} \) On désigne par ( \( C \) ) sa représentation graphique dans le plan muni d'un repère orthonormé \( (O, I, I) \). Unité graphique: 2 cm 1. Calculer leslimites de \( f \) en \( -\infty \) et en \( +\infty \) 2. On admet que \( f \) est dérivablesur \( \mathbb{R} \) Montrer que pour tout \( x \in \mathbb{R}, f^{\prime}(x)=g(x) \) Email : oualefidele@gmailcom \( \mathrm{Cd}_{1} \quad 58 \geq 20709 \quad 02-58-82-72 \quad 05-65-91-86 \) 87 Manathon de Butterfly "Etude de Fonetions" Terminale 10 3. Etudier les variations de \( f \), puis dresser son tableau de variation 4. Calcules \( \lim _{x \rightarrow-\infty} \frac{f(x)}{x} \), puisinterpréter graphiquement le résultat obtenu 5- a) Démontrer que la droite ( \( D \) ): \( y=2 x-1 \) est une asymptote à la courbe ( \( C \) ) \( \lim _ { x \rightarrow + } ( x - \sqrt { 4 x ^ { 3 } + x + 1 } ) \) 1. Considere o cenário simplificado de uma empresa de extração mineira que pretende iniciar atividade e está em negociação com a autarquia relativamente à dimensão da mina a construir. Seja \( y \) a produção alvo por mês da empresa, em milhares de euros, estima-se que o consumo mensal na região pelos trabalhadores da mina seja, em milhares de euros: \[ C(y)=0.012 y+0.000028 y^{2} \] O tratamento da poluição será da responsabilidade de instituições públicas, assumindo-se um custo mensal, em milhares de euros, de: \[ P(y)=0,00021 \times y+0,0000029 \times y^{2}+0,03 \times C(y) \] Adicionalmente, assumindo que os custos com salários da empresa serão \( S(y)=0,02 y \), em milhares de euros, prevê-se que os impostos auferidos mensalmente, em milhares de euros, sejam: \( \quad I(y)=0,15 \times(y-2 S(y))+0,25 \times(S(y)-C(y))+0,17 \times C(y) \) Doc.pedrocastlo ferrera Graph the functions in Exercises 9 a. What are the domain and range of \( f \) ? b. At what points \( c \), if any, does \( \lim _{x \rightarrow c} f(x) \) exist? c. At what points does only the left-hand limit exist? d. At what points does only the right-hand limit exist? 9. \( f(x)=\left\{\begin{array}{ll}\sqrt{1-x^{2}}, & 0 \leq x<1 \\ 1, & 1 \leq x<2 \\ 2, & x=2\end{array}\right. \) Find the area of the region bounded by the curves \( y = \frac{1}{x} \) from \( x = 1 \) to \( x = 2 \) and the line \( y = 1 \). \( \frac { d y } { d x } = ( x + y - 1 ) ^ { 2 } \) Какой объем занимает тело, созданное вращением области между \( y = x + 1 \) и \( y = 3x - x^2 \) вокруг оси Y? Let \( I=\int_{C}(2 z d x+2 y d y+2 x d z) \) where \( x, y, z \) are real, and let \( C \) be the straight line segment from point \( A:(0,2,1) \) to point \( B:(4,1,-1) \). The value of \( I \) is Si une courbe est donnée par la fonction \( y = e^{x} \), calculez sa longueur d'arc entre \( x = 0 \) et \( x = 1 \).
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy