Calculus Questions from Jan 18,2025

Browse the Calculus Q&A Archive for Jan 18,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Consider a region bounded by the x-axis and the line \( y = 2x \) from \( x = 0 \) to \( x = 1 \). If this shape is revolved around the x-axis, what is the volume of the resulting solid using triangular cross-sections perpendicular to the x-axis? The function \( f \) is defined by \( f(x)=x^{2}-2+3 \cos (2 x) \). Find all values of \( x \) that satisfy the conclusion of the Mean Value Theorem on the interval \( [-2,3] \). You may use a calculator and round to the nearest thousandth. The function \( f \) is defined by \( f(x)=x^{2}-2+3 \cos (2 x) \). Find all values of \( x \) that satisfy the conclusion of the Mean Value Theorem on the interval \( [-2,3] \). You may use a calculator and round to the nearest thousandth. Sia \( f \) una funzione derivabile su \( \mathbb{R} \), tale che \( \lim _{x \rightarrow+\infty} f^{\prime}(x)=3 \). È vero che: Scegli un'alternativa: \( f \) è limitata su una semiretta \( (a,+\infty) \) \( \lim _{x \rightarrow+\infty} f(x)=3 \) \( f \) ha asintoto obliquo destro \( f \) è un infinito di ordine 1 rispetto a \( x \), per \( x \rightarrow+\infty \) © non è necessariamente crescente su una semiretta \( (a,+\infty) \approx \) Data la funzione \( f(x)=\frac{x-1}{x^{3}+x^{2}-x-1} \), è vero che Scegli un'altemativa: \( f \) è limitata \( x \) \( f \) è un infinito di ordine 2 rispetto a \( \frac{1}{x+1} \), per \( x \rightarrow-1 \) \( \lim _{x \rightarrow-1} f(x) \) non esiste \( \lim _{x \rightarrow-1} f(x) \) esiste finito \( f \) è un infinito di ordine 1 rispetto a \( \frac{1}{x+1} \), per \( x \rightarrow-1 \) \( \int _ { - 1 } ^ { 0 } \sqrt { 2 + x ^ { 3 } } d x \quad n = 8 \) \( \int _ { 1 } ^ { 3 } e ^ { \sqrt { x } } d x \quad n = 5 \) (b) Use an appropriate method of differentiation to determine the derivative of the following functions (sim- plify your answers as far as possible): (i) \( f(x)=\cos ^{2}(x) e^{\tan (x)} \) (ii) \( g(x)=\frac{\tan ^{-1}(2 x)}{4 x^{2}+1} \) (iii) \( h(x)=\left(x^{3}-9\right)^{50} e^{x} \) (iv) \( p(x)=x \ln \left\{\frac{1-\cos x}{1+\sin x}\right\} \) \( \int _ { 0 } ^ { n } \frac { d x } { 1 + \sin x } \quad n = 6 \) Compute the average value of \( f(t) = \sin(t) + \cos(t) \) over the interval \([0, \pi]\).
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy