Calculus Questions from Jan 19,2025

Browse the Calculus Q&A Archive for Jan 19,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
The point \( P(3,-3) \) lies on the curve \( y=\frac{3}{2-x} \). (a) If \( Q \) is the point \( \left(x, \frac{3}{2-x}\right) \), find the slope of the secant line \( P Q \) (correct to six decimal places) for the following values of \( x \). (I) 2.9 \[ m_{P Q}= \] \( \qquad \) (ii) 2.99 \[ m_{P Q}=1 \quad x \] (iii) 2.999 \[ m_{P Q}= \] \( \qquad \) (iv) 2.9999 \[ m_{P Q}= \] \( \qquad \) (v) 3.1 \[ m_{P Q}= \] \( \qquad \) (vi) 3.01 \[ m_{P O}= \] \( \qquad \) (vii) 3.001 \[ m_{P Q}= \] \( \qquad \) (viii) 3.0001 \[ m_{P Q}= \] \( \qquad \) (b) Using the results of part (a), guess the value of the slope of the tangent line to the curve at \( P(3,-3) \). \[ m= \] \( \qquad \) (c) Using the slope from part (b), find an equation of the tangent line to the curve at \( P(3,-3) \). \( \square \) Hallar la derivada \( y=\frac{(x+1)^{3} \sqrt[4]{(x-2)^{3}}}{\sqrt[5]{(x-3)^{2}}} \) 3. Исследовать на экстремум функцию \( f(x, y)=-x^{2}+x y-y^{2}-9 x+3 y-20 \) Hallar la derivada de las funciones \( y=\frac{\operatorname{arcsen}\left(\ln x^{3}\right) \operatorname{sen}^{3}(x)}{\operatorname{sen} x} \) La posición de un cuerpo está descrita por \( s(t) = -4t^2 + 32t + 10 \). Calcula la aceleración del cuerpo en función del tiempo. 2. Найти уравнение касательной и нормали к поверхности \( x^{2}+x y+2 y^{2}+5 z^{2}=24 \) в точке \( (1,1,2) \). Hallar la derivada de las funciones \( y=\frac{\operatorname{arcsen}\left(\ln x^{3}\right) \operatorname{sen}^{3}(x)}{\operatorname{sen} x} \) Exercice 2 Soit \( X_{t}=\int_{0}^{t} s d B_{s} \) Д. Calculer \( E\left(X_{t}\right) \) et \( \operatorname{Var}\left(X_{t}\right) \) 2. Quelle est la loi de \( X_{t} \) 3. Calculer \( d\left(t B_{t}\right) \) à l'aide de la formule d'Itô. 4. En déduire une relation entre \( X_{t} \) et \( Y_{t}=\int_{0}^{t} B_{s} d s \) 5. Calculer \( \operatorname{Var}\left(Y_{t}\right) \) 0. Quelle est la loi de \( Y_{t} \) Utiliza la linealización para aproximar los oiguientes valores de las funciones a. \( f(x)=\sqrt{100} \); como sugerencia, puedes conviderar \( x_{0}=2.5^{1}=97.65 \). b. \( \log _{3}(1.25) \) a) \( F(x)=8 x^{4}-2 x^{-5}+5 x^{\frac{2}{4}}+8 \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy