Calculus Questions from Jan 21,2025

Browse the Calculus Q&A Archive for Jan 21,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Determine el volumen resultante de rotar la función \( f(x) = \frac{1}{x} \), desde \( x = 1 \) hasta \( x = 2 \), alrededor del eje y usando el método de lavadoras. \( f(x)=\frac{1}{2} x^{2}-5 x-2 \) Berken het differentiequalient van \( f(x) \) op \( [-3,1] \) Beceken de gemiddelde verandering van y op \( [2,5] \) van de functie \( f(x)=2 x^{3}-4 x+1 \) Fund the area of the region bounded by \( y=\sqrt{x} \quad y=18-x^{2} \quad \) and the \( x \)-axis in the 1st Quadvant. (1) Hallar la derivada \( y=\left[\operatorname{arcsen}\left(\mathbb{e}^{2 x}\right)\right] \mathbb{C}^{2} \) Where the functina is increasing and decreasing, \[ f(x)=3 x^{2}+5 \] a. The minimum value is 5 . The domain is all real numbers and the range is \( y \geq 5 \). The frnction is decreasing to the left of \( x=0 \) and increasing to the right of \( x=0 \). b. The maxin value is 5 . The domain is all real rubers and the mige it \( 1 \leq 5 \). The function is increasing to the left of \( x=0 \) and decreasing to the right of \( x=0 \). c. The minimum value is -5 . The domain is all real numbers and the range is \( y \geq-5 \). The fumction is decreasing to the left of \( x=0 \) and increasing to the right of \( x=0 \). d. The maxim walue is -5 . The domain is all real numbers and the range is \( y \leq-5 \). Th function is increasing to the left of \( x=0 \) and decreasing to the right of \( x=0 \). \( \int _ { 0 } ^ { \pi } e ^ { \cos ( t ) } \sin ( 2 t ) d t \) Name: 14. For this problem, \( f(x)=x^{2} \). Because \( f \) is differentiable everywhere, it satisfies all hypotheses of the MVT on any interval \( [a, b] \). a) What does the MVT say about \( f \) on \( [\mathrm{a}, \mathrm{b}]=[-1,1] \) ? Find all suitable values of \( c \). How many are there? b) What does the MVT say about \( f \) on \( [\mathrm{a}, \mathrm{b}]=[1,2] \) ? Find all suitable values of \( c \). How many are there? c) Show that for \( f(x)=x^{2} \) and any interval \( [a, b] \), the MVT's number \( c \) is the midpoint of \( [\mathrm{a}, \mathrm{b}] \). \( y ^ { \prime \prime } + 4 y ^ { \prime } + 5 y = 0 \quad \operatorname { con } y ( 0 ) = 1 \quad y ^ { \prime } ( 0 ) \Rightarrow 6 \) 13. Verify that the hypotheses of the Mean Value Theorem are satisfied on the given interval, and find all values of \( c \) in that interval that satisfy the conclusion of the theorem. a) \( f(x)=x^{2}+x ;[-4,6] \) d) \( f(x)=\sqrt{2}-x-x^{2} \); b) \( \left.\left.f(x)=x^{3}+x-4 ;-1,2\right]\right] \) c) \( f(x)=x+\frac{1}{x} \); 3,4\( ] \) Use \( z \)-substitution, i.e \( z=\tan \frac{x}{2} \) to determine the integral \[ \int \frac{2 \sin x}{1-\cos 2 x} d x \]
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy