Geometry Questions from Dec 25,2024

Browse the Geometry Q&A Archive for Dec 25,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
the area of \( \triangle A B C=12 \mathrm{~cm}^{2} \), then \( \left(b^{2}+c^{2}-a^{2}\right) \tan A=\cdots \) 12 (b) 24 [b] If \( b \) is the middle proportional between \( a \) and \( c \) , then prove that : \( \frac{a-b}{a-c}=\frac{b}{b+c} \) \( A B C \) est un triangle et \( I \) milieu de \( [B C] \). 1) Soit \( \operatorname{Ebar}\{(A, 1) ;(B, 2) \),\( \} et F b a r\{(B, 2) ;,(C, 1)\} \). a) Montrer que: \( \overrightarrow{A E}=\frac{2}{3} \overrightarrow{A B} \). b) Montrer que: \( \overrightarrow{B F}=\frac{1}{3} \overrightarrow{B C} \) c) Construire les points \( I, E \) et \( F \). 2) Soit \( G b a r\{(A, 1) ;(B, 2) ;,(C, 1)\} \). a) Montrer que \( \operatorname{Gbar}\{(A, 1) ;(F, 3) \),\( \} . \) b) Montrer que \( G \in(E C) \). c) Montrer que \( G \in(I B) \) et construire \( G \). 3) Determiner l'ensemble des points \( M \) du plan qui verifient chacune des équations suivantes: a) \( \|\overrightarrow{M A}+2 \overrightarrow{M B}+\overrightarrow{M C}\|=8 \) b) \( \|\overrightarrow{M A}+2 \overrightarrow{M B}\|=\|\overrightarrow{M C}+2 \overrightarrow{M B}\| \) 3) The exterior bisector of the vertex angle of an isosceles triangle \( \cdots \cdots . . . \). the base. \( \begin{array}{ll}\text { (a) bisects } & \text { (b) perpendicular to } \\ \text { (c) intersect } & \text { (d) parallel }\end{array} \) Cos'è un cerchio? Dado un cilindro con un radio de 4 cm, ¿cuál debe ser la altura para que el volumen sea \( 64\pi \) cm³? In the opposite figure : \( \frac{\mathrm{BE}}{\mathrm{BC}}= \) \( \begin{array}{ll}\text { (a) } \frac{1}{2} & \text { (b) } 2 \\ \text { (c) } \frac{1}{3} & \text { (d) } 3\end{array} \) e) La somma e la differenza delle diagonali di un rombo misurano 126 cm e 18 cm . Calcola la misura del raggio della circonferenza inscritta nel rombo. 6. \( A D, B E \) and \( C F \) are the three altitudes of \( \triangle A B C \). Show that \( \begin{array}{ll}\text { (i) Perimeter of triangle } A B C>2 A D & \text { (ii) Perimeter of triangle } A B C>2 B E \\ \text { (iii) Perimeter of triangle } A B C>2 C F & \text { (Perimeter of triangle } A B C)>2(A D+B E+C F)\end{array} \) ¿Cómo se calcula el área superficial de un cubo? Presenta la fórmula utilizada.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy