Pre-calculus Questions from Dec 02,2024

Browse the Pre-calculus Q&A Archive for Dec 02,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
The exponential model \( A=551.2 e^{0.018 t} \) describes the population, \( A \), of a country in millions, \( t \) years after 2003. Use the model to determine the population of th country in 2003 . The population of the country in 2003 was \( \square \) million. 3. En el presente problema trabajamos con restricciones de funciones. Sea la función \( \quad f: \mathbb{R} \rightarrow \mathbb{R}, \quad f(x)=15+21 \cos \left(\frac{2 \pi}{20}(x-12)\right) \). Sea la función restricción \( g=\left.f\right|_{[32,52]} \). La imagen de la función \( g \) es rango \( (g)=[A, B] \). (a) Encuentre el valor de \( A \). (b) Encuentre el valor de \( B \). La imagen inversa de 15 satisface \( g^{-1}(15)=\{C, D\} \) con \( C<D \). (c) Encuentre el valor de \( C \). (d) Encuentre el valor de \( D \). Considere la función restricción \( h=\left.f\right|_{[32, E]} \), donde \( E \) es una con- stante a ser determinada. ¿Cuál es el valor aproximado de \( e \) al redondear a tres decimales? 2. La función \[ f(x)=\frac{\sqrt{x+34}+\sqrt{41-x}}{x^{2}-22^{2}} \] tiene como dominio el conjunto \[ [A, B) \cup(B, C) \cup(C, D] \] donde \( A<B<C<D \) son números reales. (a) Encuentre el valor de \( A \). (b) Encuentre el valor de \( B \). (c) Encuentre el valor de \( C \). (d) Encuentre el valor de \( D \). Find the magnitude and positive direction angle of the vector \( \langle-2 \sqrt{3},-2\rangle \). The magnitude of the vector is (Simplify your answer.) The direction angle is \( \square^{\circ} \). (Simplify your answer. Use angle measures greater than or equal to 0 and less than 360. .) For the following rectangular equation, give the equivalent polar equation and sketch its graph. 10 of 22 \( x-y=8 \) The polar form of the rectangular equation is \( \square \). Typestio (Use a comma to separate answers as needed. Type each answer only once.) On considère les fonctions \( f \) et \( g \) définies par: \[ f(x)=\sqrt{x+2} \text { et } g(x)=\frac{3 x}{2 x-1} \] Et soient \( \left(C_{f}\right) \) et \( \left(C_{g}\right) \) les courbes respectives des fonctions \( f \) et \( g \) dans un repère orthonormé \( (O ; \vec{l} ; \vec{\jmath}) \). 1) Déterminer \( D_{f} \) et \( D_{g} \). 2) Montrer que \( A(-1 ; 1) \) et \( B(2 ; 2) \) sont des points aux courbes \( \left(C_{f}\right) \) et \( \left(C_{g}\right) \). 3) Dresser les tableaux de variations des fonctions \( f \) et \( g \). 4) Construire les courbes \( \left(C_{f}\right) \) et \( \left(C_{g}\right) \) sur le repère (O; \( \vec{l} ; \vec{\jmath}) \). 5) Résoudre graphiquement les inéquations: \[ \sqrt{x+2}-\frac{3 x}{2 x-1}<0 \text { et } \frac{3 x}{2 x-1} \sqrt{x+2} \leq 0 \] Complete the following simplification. \( \begin{array}{l} \frac{6 \operatorname{cis}\left(45,000^{\circ}\right)}{\operatorname{cis}\left(45,000^{\circ}\right)}=6 \mathrm{cis} \\ = \\ \begin{aligned} \frac{6 \operatorname{cis}\left(45,000^{\circ}\right)}{\operatorname{cis}\left(45,000^{\circ}\right)} & =6 \operatorname{cis}(\square) \\ & =\square\end{aligned}\end{array} \) Ricardo shot an arrow from ground level at the foot of a tower. The height of the arrow \( y \), in feet, was a function of the number of seconds, \( t \), since Ricardo shot the arrow: \[ y(t)=-16(t-4)^{2}+256 \] Ricardo then climbed to the top of the tower and shot another arrow in the same way. The arrow shot from the tower was in the air 1 second longer than the arrow shot from ground level. How tall was the tower in feet? Ricardo shot an arrow from ground level at the foot of a tower. The height of the arrow \( y \), in feet, was a function of the number of seconds, \( t \), since Ricardo shot the arrow: \[ y(t)=-16(t-4)^{2}+256 \] Ricardo then climbed to the top of the tower and shot another arrow in the same way. The arrow shot from the tower was in the air 1 second longer than the arrow shot from ground level. How tall was the tower in feet?
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy