Pre-calculus Questions from Dec 27,2024

Browse the Pre-calculus Q&A Archive for Dec 27,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
QUESTION 4 It is given that the asymptotes of \( f(x)=\frac{6}{x+p}+q \) intersect at \( (4 ; 3) \). \( 4.1 \quad \) Write down the equation of \( f \). \( 4.2 \quad \begin{array}{l}\text { Sketch the graph of } f \text {, clearly showing all the intercepts with the axes and any } \\ \text { asymptotes. }\end{array} \) \( 4.4 \quad \begin{array}{l}g \text { is one of the axes of symmetry of } f \text { and it is a decreasing function. Determine the } \\ \text { equation of } g \text {. } \\ 4.5 \\ (-3 ; 2) \text { is a point on } f \text {. Determine the coordinates of the image of this point after } \\ \text { reflection in } g \text {. }\end{array} \) (a) Montrer que \( \left(v_{n}\right) \) est une suite géométrique de raison \( \mathrm{q}=4 \) (b) Écrire \( v_{n} \) puis \( u_{n} \) en fonction de \( n \) C) Calculer en fonction de \( n: S_{n}=\sum_{k=1}^{n} v_{k} \) puis \( T_{n}=\prod_{k=1}^{n} v_{k} \) On considère la suite \( \left(u_{n}\right) \) définie par: \( u_{0}=2 e t(\forall n \in \mathbb{N}) ; u_{n+1}=\sqrt{6+u_{n}} \) 1 Montrer que : \( (\forall n \in \mathbb{N}) ; 1<u_{n}<3 \) 2 Vérifier que \( :(\forall n \in \mathbb{N}) ; 3-u_{n+1}=\frac{1}{3+\sqrt{6+u_{n}}}\left(3-u_{n}\right) \) The population of a certain species in a protected area can be modeled by the function \( P(t) = 200 + 50 \sin(t) \), where \( t \) is measured in years. Determine the total population increase over one complete cycle (from \( t=0 \) to \( t=2\pi \)). j) \( \sin ^{-1}(y)+x^{3}=\sqrt{y} \) Una sucesión infinita tiene la caracteristica de que: a. El término \( a_{n} \) siempre es el último de la sucesión. b. Cada término \( a_{n} \) tiene un antecesor igual a \( a_{n+1} \) c. Cada término \( a_{n} \) es el último en sucesiones pares. d. Cada término \( a_{n} \) tiene un sucesor igual a \( a_{n+1} \) Graph, state domain and range: \[ y=-3 \sqrt{x+3}+5 \] 1. Expand \( (1+x)^{\frac{1}{3}} \) in ascending powers of x up to the term \( x^{3} \). By substituting 0.08 for \( x \) in your result. Obtain an approximation value of the cube root of 5 . 81 The range of the function \( f(x)=2-x^{2}, x \neq 0 \) is \( \ldots \ldots \ldots \ldots \ldots \) \( \begin{array}{llll}\text { (a) }]-\infty, 2] & \text { (b) }] 2, \infty[ & \text { (c) }] 0,2] & \text { (d) }[0,2]\end{array} \) Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \quad 2^{x-1}+1 \) Clearly indicate all intercepts with the axes, turning point(s) and asymptote(s). Pre-Calculus 11 Practice Midterm 2 Find the \( x \)-intercepts of the following quadratic function: \( y=3 x^{2}-13 x-10 \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy