Pre-calculus Questions from Dec 30,2024

Browse the Pre-calculus Q&A Archive for Dec 30,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Which of the following is a property of the graph of an expo- nential growth function of the form \( f(x)=a b^{x} \) ? select all that apply. A The graph is a curve that increases more rapidly for larger values of \( x \). B The graph has a \( y \)-intercept at \( (0, a) \). C The graph has an \( x \)-intercept at \( (b, 0) \). D The graph has a horizontal asymptote at \( y=1 \). On considère la suite \( \left(U_{n}\right)_{n} \) définie par: \( U_{0}=-\frac{3}{4} \) ct \( U_{n+1}=\frac{2 U_{n}-1}{2 U_{n}+5} \) 1) a) vérifier que \( (\forall n \in \mathbb{N}) \quad U_{n+1}=1-\frac{6}{2 U_{n}+5} \) b) prouver que \( (\forall n \in \mathbb{N})-1<U_{n}<-\frac{1}{2} \) 2) étudier la monotonie de la suite \( \left(U_{n}\right)_{n} \) 3) on pose \( V_{n}=\frac{2 U_{n}+1}{U_{n}+1} \) a) montrer que \( \left(V_{n}\right)_{n} \) est une suite géométrique b) déterminer \( U_{n} \) en fonction de \( n \) Suites EX/1 \( \left(u_{n}\right)_{n} \) une suite telle que \( :\left\{\begin{array}{l}u_{0}=2 \\ u_{n+1}=\frac{2 u_{n}-3}{4-u_{n}}\end{array}\right. \) Pour tout \( n \) de \( \mathbb{N} \) on pose \( v_{n}=\frac{u_{n}-3}{u_{n}+1} \) 1. montrer que \( \forall n \in \mathbb{N} \quad-1 \leq u_{n} \leq 3 \) 2. étudier la monotonie de \( \left(u_{n}\right)_{n} \) 3. a) montrer que \( \left(v_{n}\right)_{n} \) est géométrique b) calculer \( u_{n} \) en fonction de \( n \) c) déterminer: \( S_{n}=\sum_{k=0}^{n} v_{k} \) et \( P_{n}=\prod_{k=0}^{n} v_{k} \) en fonction de \( n \) The equation of a hyperbola is given by \( f(x)=\frac{3}{x-7}-4 \). Write down the equation of the new function that is formed when \( f \) is transformed as follows: \( \begin{array}{ll}3.1 & \text { Shift two units to the left } \\ 3.2 & \text { Shift } 3 \text { units up } \\ 3.3 & \text { Shift } 1 \text { unit right and } 2 \text { units down } \\ 3.4 & \text { The equation of the new hyperbola has new asymptotes at } x=-4 \text { and } y=-1\end{array} \) (1) On considère la suite numérique \( \left(U_{n}\right) \) définie par: \( U_{0}=\frac{1}{3} \) et \( U_{n+1}=\frac{1}{3-U_{n}} \) pour tout \( n \) de \( N \). 1. Calculer \( U_{1} \) et \( U_{2} \). 2. Montrer par récurrence que pour tout \( n \) de \( N: U_{n}<1 \). (a) Montrer que pour tout \( n \) de \( N: U_{n+1}-U_{n}=\frac{\left(U_{n}-1\right)^{2}}{3-U_{n}} \) (b) En déduire la monotonie de \( \left(U_{n}\right) \). 4. On considère la suite numérique \( \left(V_{n}\right) \) définie par: \( V_{n}=\frac{1}{1-U_{n}} \) pour tout \( n \) de \( N \). (a) Montrer que \( \left(V_{n}\right) \) est une suite arithmétique en déterminant sa raison et son premier terme. (b) Écrire \( V_{n} \) en fonction de \( n \) puis déduire que \( U_{n}=\frac{n+1}{3+n} \) pour tout \( n \) de \( N \). (c) Calculer la somme : \( S_{8}=V_{0}+V_{1}+\ldots+V_{8} \) etch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \cdot 2^{x-1}+1 \) early indicate all intercepts with the axes, turning point(s) and asymptote(s). etch on the same set of axes the graphs of \( f(x)=-2 x^{2}-4 x+6 \) and \( g(x)=-2 \cdot 2^{x-1}+1 \) early indicate all intercepts with the axes, turning point(s) and asymptote(s). \( \left. \begin{array} { l } { \log _ { 3 } 2 = a } \\ { \log _ { 3 } 5 = b } \end{array} \right. \left\{ \begin{array} { l } { \log _ { 25 } 16 = ? } \end{array} \right. \) Graph the function \[ f(x)=\left\{\begin{array}{ll}\lfloor x\rfloor, & x \geq 0 \\ \lceil x\rceil, & x<0\end{array}\right. \] What is the y-intercept of the exponential function \( f(x) = 2^x \)?
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy