Pre-calculus Questions from Jan 08,2025

Browse the Pre-calculus Q&A Archive for Jan 08,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Lepose that the function \( h \) is defined, for all real numbers, as follows. \( h(x)=\left\{\begin{array}{ll}-\frac{1}{2} x+1 & \text { if } x \leq-1 \\ (x-1)^{2}-3 & \text { if }-1<x<2 \\ 1 & \text { if } x \geq 2\end{array}\right. \) \( h(0)=h(2) \), and \( h(4) \) Find the domain and the range of the following function. \( f(x)=\left\{\begin{array}{ll}x+1, & \text { for } x \leq-4 \\ -2, & \text { for }-4<x<5 \\ \frac{1}{5} x, & \text { for } x \geq 5\end{array}\right. \) The domain of the function is Type your answer in interval notation) Determine l'ensemble de definition de la fonctionf definie de IR versIR \[ f(x)=\frac{x+2}{\sqrt{6 x-5}+2 x-3} \] QUESTION 3 The equation of a hyperbola is given by \( f(x)=\frac{3}{x-7}-4 \). Write down the equation of the new function that is forme \( 3.1 \quad \) Shift two units to the left \( 3.2 \quad \) Shift 3 units up \( 3.3 \quad \) Shift 1 unit right and 2 units down \( 3.4 \quad \) The equation of the new hyperbola has new asyr QUESTION 4 Sketch on the same set of axes the graphs of \( f(x)=-2 x^{2} \). Clearly indicate all intercepts with the axes, turning point 2)(Non-calculatorl) The first two terms of a series are \( 1+\sqrt{2} \) and \( 1+\frac{1}{\sqrt{2}} \). (a) If the series is arithmetic, show that the common difference is \( -\frac{1}{2} \sqrt{2} \). Show also that the sum of the first ten terms is \( \frac{5}{2}(4-5 \sqrt{2}) \). (b) If the series is geometric, show that the sum to infinity exists. Show also that \( S_{\infty}=4+3 \sqrt{2} \). Considérons les fonctions \( f \) et \( g \) définies par : \[ g(x)=\sqrt{x+1} \text { et } f(x)=-\frac{1}{2} x^{2}+x+\frac{7}{2} \] The optimal height h of the letters of a messagu printed on pavement is given by the formula \( h=\frac{0.00252 d^{227}}{e} \). Here dis the dietance of the driver from the letters and e is the height of the driver's eye above the pavement All of the distances are in meters. Find \( h \) for the given values of d and e \[ d=1259 \mathrm{~m} \quad \mathrm{e}=14 \mathrm{~m} \] \[ h \approx \] \( \square \) II (Round is the nearest tenth as needed.) 6.1.2 Determine the values of \( x \) in the interval \( 0^{\circ} \leq x \leq 135^{\circ} \) for which \( f(x) \leq-1 \). 10. Write the following in polar form: (i) \( \left.\left.\left[5\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)\right] \right\rvert\, 2\left(\cos \frac{\pi}{6}+i \sin \frac{\pi}{6}\right)\right] \) polar (ii) \( \left[3\left(\cos \left(\frac{\pi}{7}\right)+i \sin \left(\frac{\pi}{7}\right)\right)\right]\left[5\left(\cos \frac{\pi}{9}+i \sin \frac{\pi}{9}\right)\right] \) (iii) \( \left.\left.\left[2\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)\right] \right\rvert\, 7\left(\cos \left(\frac{\pi}{8}\right)+i \sin \left(\frac{\pi}{8}\right)\right)\right] \) (iv) \( \left[7\left(\cos \left(\frac{\pi}{8}\right)+i \sin \left(\frac{\pi}{8}\right)\right) \left\lvert\,\left[9\left(\cos \left(\frac{\pi}{3}\right)+i \sin \left(\frac{\pi}{3}\right)\right)\right]\right.\right. \) (v) \( \left.\left[9\left(\cos \frac{\pi}{2}+i \sin \frac{\pi}{2}\right)\right] \left\lvert\, 3\left(\cos \left(\frac{\pi}{5}\right)+i \sin \left(\frac{\pi}{5}\right)\right)\right.\right] \) Prove that \( a+a r+a r^{2}+\ldots( \) to \( n \) terms \( )=\frac{a\left(1-r^{n}\right)}{1-r} \) for \( T \neq 1 \). Given the geometric series \( 15+5+\frac{5}{3}+\ldots \) \( 5.2 .1 \quad \) Explain why the series converges. \( 5.2 .2 \quad \) Evaluate \( \sum_{n=1}^{\infty} 5\left(3^{2-n}\right) \) The sum of the first \( n \) terms of a sequence is given by \( S_{n}=2^{n+2}-4 \). \( 5.3 .1 \quad \) Determine the sum of the first 24 terms.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy