Pre-calculus Questions from Jan 18,2025

Browse the Pre-calculus Q&A Archive for Jan 18,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
8. \( f(x)=\sqrt{\frac{x^{2}-1}{x^{2}+1}} \) y \( g(x)=\sqrt{\frac{x+1}{x-1}} \) 9. \( f(x)=\{(2,5),(3,6),(4,7),(5,8)\} \quad \) y \( \quad g(x)=\{(1,2),(2,3),(3,4),(4,5)\} \) (b) Determine the value of \( m \) in each of the following: (1) \( \sum_{k=1}^{m}(k+1)=1595 \) (2) \( \sum_{r=1}^{m} 5^{r}=19530 \) (3) \( \sum_{p=3}^{m}(4 p-5)=7500 \) (4) \( \sum_{p=5}^{m}(2-3 p)=-7085 \) (5) \( \sum_{i=4}^{m} 8\left(\frac{2}{3}\right)^{i-5}=\frac{2660}{81} \) (6) \( \sum_{k=-2}^{m} \frac{1}{2}(3)^{k-1}=\frac{1640}{27} \) (7) \( \sum_{k=1}^{m}(6 k-8)<2600 \) (8) \( \sum_{r=2}^{m} 2(3-r)>-800 \) (9) \( \sum_{p=0}^{m} 3(2)^{2 p-3}<8000 \) (c) Write the following series in sigma notation: (1) \( -3+4+11+18+\ldots+137 \) (2) \( 2+2+2+2+\ldots+2(15 \) terms \( ) \) (3) \( 6+2+\frac{2}{3}+\frac{2}{9}+\ldots \) (to infinity) (4) \( 10+6+2-2-\ldots-210 \) (5) \( -2+14-98+686-\ldots+33614 \) (6) \( 3+3+5+9+\ldots+555 \) (7) \( x+(x+3)+(x+6)+(x+9)+\ldots+(x+120) \) (8) \( 4+4 x+4 x^{2}+4 x^{3}+\ldots+4 x^{65} \) (d) For which values of \( x \) will the geometric series \( \sum_{i=1}^{\infty} 4(3-x)^{i} \) converge? (e) Calculate the value of \( p \) if \( \sum_{k=0}^{\infty} 27 p^{k+1}=\sum_{r=3}^{14}(30-3 r) \). Question 5: \( (5 \) Marks \( ) \) Obtain the inverse \( z \)-transform by finding \( x(k) \) for \( k=0,1,2,3,4 \) of the function: \( x(z)=\frac{10 z+5}{(z-1)(z-0.2)} \) Explain how the graph of the function \( h(x) = -\sqrt{x} \) is affected by the transformation compared to the original \( f(x) = \sqrt{x} \). Sketch gmex of \( f(x)=\frac{3 x^{2}+2}{x^{2}+4 x} \) sketch graph of \( f(x)=\frac{3 x^{2}+2}{x^{2}+4 x} \) \( f(x)=\sqrt {x+\sqrt {x+\sqrt {x}}} \) EASTERN CAPE MAY/SUNE 12023 Given the following geometric series: \( \frac{24}{x}+12+6 x+3 x^{2}+\ldots \) 3.1.1 Determine the value of \( r \), the common ratio, in terms of \( x \) 3.1.2 Determine the value of \( x \) for which this series converges 3.1.3 If \( x=4 \), determine the sum of the series to 15 terms. Calculate: \( \sum_{n=1} 6(2)^{-4} \) The sum of the first \( n \) terms of an arithmetic series is given \( S_{n}= \) 3.3.1 Calculate the sum of the first 15 terms 6. Sketch the graph of: a) \( f(x)=\frac{x^{2}+x-6}{x^{3}-4 x^{2}-7 x+10} \quad \) b) \( f(x)=\frac{3 x^{2}-2 x+1}{x-1} \) c) \( f(x)=\frac{3 x^{2}+2}{x^{2}+4 x-5} \) What is the range of the inverse function for the function \( f(x) = \sqrt{x - 4} + 1 \)?
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy