Probability Questions from Nov 08,2024

Browse the Probability Q&A Archive for Nov 08,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
7. A computer generates a single-digit random number. It could be any number from 0 to 9. Find the probability that it is: \( \begin{array}{llll}\text { a } 0 & \text { b not } 0 & \text { c a multiple of } 3 & \text { d } 3.5\end{array} \) e less than 7. A study determined that \( 9 \% \) of children under 18 years of age live with their father only. Find the probability that at least 3 children, out of 10 children selected at random from all children under 18 years of age, lived with their father only. The probability that at least 3 children live with their father only is (Do not round until the final answer. Then round to the nearest thousandth as needed.) 2. Se organizó una rifa para recaudar fondos para comprar los mouses del laboratorio computo. Se numeraron las boletas de la rifa desde el 000 hasta 999 . Si usted compra cinc boletas ¿Qué probabilidad tiene de ganar la rifa? A. El \( 5 / 999 \) de probabilidad que me gane la rifa. B. El \( 5 / 1.00 \) de probabilidad que me gane la rifa. C. Tengo la misma probabilidad de ganarme la rifa que los demás. D. Ninguna de las anteriores. Question \( 3(1+1+1=3 \) marks) A pencil case has 5 red pens, 4 blue pens and 3 black pens. A pen is drawn randomly from the pencil case. Giving your answer as a proper fraction in its simplest form, find: a. \( \operatorname{Pr} \) (drawing a blue pen) b. \( \operatorname{Pr} \) (not drawing a blue pen) c. Pr (drawing a red or a black pen) The PTO is selling raffle tickets to raise money for classroom supplies. A raffle ticket costs \( \$ 5 \). There is 1 winning ticket out of the 100 tickets sold. The winner gets a prize worth \( \$ 98 \). Round your answers to the nearest cent. What is the expected value (to you) of one raffle ticket? \( \$ \) Calculate the expected value (to you) if you purchase 8 raffle tickets. \( \$ \) What is the expected value (to the PTO) of one raffle ticket? \$ If the PTO sells all 100 raffle tickets, how much money will they raise for the classroom supplies? \$ 10 Halla lo que se pide en cada caso, si se efectúa un ex- perimento que consiste en lanzar dos dados cúbicos y cada una de sus caras muestra un número entre 1 y 6 . a. El espacio muestral. b. Un suceso seguro y su probabilidad. c. Tres sucesos equiprobables. d. Tres sucesos compuestos y la probabilidad de cada uno. e. Un suceso imposible y su probabilidad. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of \( 131.8-\mathrm{cm} \) and a standard deviation of \( 1.6-\mathrm{cm} \). Find the probability that the length of a randomly selected steel rod is between \( 133.9-\mathrm{cm} \) and \( 135.5-\mathrm{cm} \). \( P(133.9-\mathrm{cm}<X<135.5-\mathrm{cm})= \) Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact \( z \)-scores or \( z \) - scores rounded to 3 decimal places are accepted. Razonamiento 6 Halla la probabilidad del evento que se indica en cada caso, si el experimento consiste en extraer de forma aleatoria una bola identificada con algún número en- tre 1 y 9 . a. Que la bola tenga el número 5 . b. Que la bola muestre un número menor que 4 . c. Que la bola esté identificada con un número mayor que 6. d. Que la bola muestre un número mayor que 2 pero menor que 6 . A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of \( 131.8-\mathrm{cm} \) and a standard deviation of \( 1.6-\mathrm{cm} \). Find the probability that the length of a randomly selected steel rod is between \( 133.9-\mathrm{cm} \) and \( 135.5-\mathrm{cm} \). \( P(133.9-\mathrm{cm}<X<135.5-\mathrm{cm})= \) Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact \( z \)-scores or \( z \) - scores rounded to 3 decimal places are accepted. A company produces steel rods. The lengths of the steel rods are normally distributed with a mean of \( 218-\mathrm{cm} \) and a standard deviation of \( 1.7-\mathrm{cm} \). Find the probability that the length of a randomly selected steel rod is between \( 213.9-\mathrm{cm} \) and \( 218.3-\mathrm{cm} \). \( P(213.9-\mathrm{cm}<X<218.3-\mathrm{cm})= \) Enter your answer as a number accurate to 4 decimal places. Answers obtained using exact \( z \)-scores or \( z \) - scores rounded to 3 decimal places are accepted.
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy