Trigonometry Questions from Nov 07,2024

Browse the Trigonometry Q&A Archive for Nov 07,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
\[ \begin{array}{l}\text { Solve the equation for } \mathrm{x} \text {, where } \mathrm{x} \text { is restricted to the given interval. } \\ y=9 \cos \mathrm{x}, \text { for } \mathrm{x} \text { in }[0, \pi]\end{array} \] \( \begin{array}{l}\mathrm{x}=\square \\ \text { (Use integers or fractions for any numbers in the expression.) }\end{array} \) स Choose the correct answer below. A. \( \arccos 1=x \) B. \( \arccos (-1)=x \) C. \( \arcsin (-1)=x \) Choose the correct answer below. A. \( \arcsin \left(-\frac{1}{2}\right)=x \) B. \( \arctan \frac{\sqrt{3}}{3}=x \) C. \( \arccos \left(-\frac{1}{2}\right)=x \) 3. Ángulo de elevación de un avión Un avión vuela a una altura de 3000 metros. Desde el suelo, una persona observa el avión con un ángulo de elevación de \( 45^{\circ} \). ¿A qué distancia horizontal se encuentra el avión de la persona? Which one of the following equations has solution \( \frac{3 \pi}{4} ? \) A. \( \arcsin \frac{\sqrt{2}}{2}=x \) B. \( \arccos \left(-\frac{\sqrt{2}}{2}\right)=x \) C. \( \arctan 1=x \) c. \( \frac{\tan ^{2}(\theta)}{\sec \theta}=\sec (\theta)-\cos (\theta) \quad \) d. \( \frac{\sec (\theta)}{\cos (\theta)}-\frac{\tan (\theta)}{\cot (\theta)}=1 \) Which one of the following equations has solution \( \frac{\pi}{4} \) ? Choose the correct answer below. A. \( \arcsin \frac{\sqrt{2}}{2}=x \) B. \( \arctan \frac{\sqrt{3}}{3}=x \) C. \( \arccos \left(-\frac{\sqrt{2}}{2}\right)=x \) Which one of the following equations has solution 0 ? A. \( \arctan 1=\mathrm{x} \) B. \( \arccos 0=\mathrm{x} \) C. \( \arcsin 0=\mathrm{x} \) Q1. Verify (Use known identities e.g., reciprocal, quotient, Pythagorean, even/odd etc. Also see if you can use common denominator, conjugate, or factoring, refer to your guided note) \( \begin{array}{ll}\text { a. }(1+\sin (x)) \cdot(1+\sin (-x))=\cos ^{2}(x) & \text { b. } \frac{\cot (\theta)}{\csc (\theta)}=\cos (\theta)\end{array} \) Hint: Recall \( \sin (-x)=-\sin (x) \) Express the given trigonometric functions in terms of the same function of a positive acute angle. \[ \sin 160^{\circ}, \cos 210^{\circ} \]
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy