Trigonometry Questions from Nov 14,2024

Browse the Trigonometry Q&A Archive for Nov 14,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Sean \( S, C \) y R las medidas en grados sexagesimales, centesimales y radianes de un mismo ángulo, respectivamente. Se cumple que \( (S / 3-C / 5)^{2}-20 R / \pi>0 \). Calcule el menor valor posible (en radianes) para dicho ángulo positivo, sabiendo que \( S \) y C son números enteros. Q1. Solve the following equations on the interval \( [0,2 \pi) \). \( \begin{array}{ll}\text { a. } 2 \cos x=1 & \text { b. } \sin (2 x)=\cos (x) \\ \text { Hint: } \operatorname{Recall} \sin (2 x)=2 \sin (x) \cos (x)\end{array} \) \( \begin{array}{ll}\text { c. } \csc ^{2}(x)-4=0 & \text { d. } 2(\tan (x)+3)=5+\tan (x)\end{array} \) \( \frac{a}{\operatorname{sen} a}=\frac{b}{\operatorname{sen} \beta}=\frac{c}{\operatorname{sen} \theta} \) La siguiente expresión matemática represent a la a. Ley de cosenos b. Ley de trigonometría c. Ley de senos Simplifique la expresión considerando \( \arctan (a) \neq 0 \) \( H=\frac{\operatorname{arcsen}\left(\frac{2 a}{1+a^{2}}\right)+2 \arccos \left(\frac{1-a^{2}}{1+a^{2}}\right)}{\arctan [\operatorname{arccot}(\tan (2 a))-\operatorname{arccot}(\tan (3 a))]} \) Tu respuesta Calcule el mayor valor de \( x<360^{\circ}, \quad \) * correspondiente al máximo valor de: V=sen \( (4 x)+\cos (4 x) \). Nota: dar el resultado en grados. Tu respuesta It is given that \( \sin x \sin y=\frac{1}{12} \) and \( \cos x \cos y=\frac{3}{4} \) (i) Find the value of \( \cos (x+y) \) and of \( \cos (x-y) \) (ii) Hence, find the acute angles \( x \) and \( y \). Simplifique la expresión considerando \( \arctan (\mathrm{a}) \neq 0 \). \( \mathrm{H}=\frac{\operatorname{arcsen}\left(\frac{2 \mathrm{a}}{1+\mathrm{a}^{2}}\right)+2 \arccos \left(\frac{1-\mathrm{a}^{2}}{1+\mathrm{a}^{2}}\right)}{\arctan [\operatorname{arccot}(\tan (2 \mathrm{a}))-\operatorname{arccot}(\tan (3 \mathrm{a}))]} \) Si \( \operatorname{tg}(x)+\operatorname{ctg}(x)=5 / 2 M= \) \( [\operatorname{sen}(45+x)] /[\operatorname{sen}(135+x)] \) calcule \( M^{2} \) 59. \( y=\cos (2 x-1) \cdot \tan (1-2 x) \) \( \sin x - \cos ( - x ) = \frac { \sqrt { 2 } } { 2 } \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy