Trigonometry Questions from Nov 23,2024

Browse the Trigonometry Q&A Archive for Nov 23,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Find the general solution of \( 2 \sin \theta^{2}-\sin \theta-1=0 \) (a) \( t=\arcsin \left(\frac{\sqrt{2}}{2}\right) \) This means that \( \square \) where \( t \) lies in the interval If the range of the function \( f: f(x)=a \cos b x, a>0, b>0 \) is \( [-2,2], f \) is a periodic function and its period \( =\frac{\pi}{2} \) , then \( : \frac{a}{b}=\ldots \ldots \ldots \ldots \) \( \begin{array}{lll}\text { a) } 1 & \text { b) } \frac{1}{2} & \text { d) } \frac{1}{4}\end{array} \) If \( \frac{2-\cos x}{5}=\mathbf{m} \), then \( \mathbf{m} \in \ldots \ldots \) \( \begin{array}{ll}\text { a) }\left[\frac{1}{5}, \frac{3}{5}\right] & \text { b) }\left[-\frac{1}{5}, \frac{3}{5}\right] \\ \text { c) }\left[-\frac{2}{5}, \frac{3}{5}\right] & \text { d) }\left[-\frac{1}{5}, \frac{2}{5}\right]\end{array} \) Question 1 (1 point) \( \begin{array}{l}\text { Given the measurement of angle } \mathrm{A}=35.4^{\circ} \text {, determine the measure of the } \\ \text { complement of angle } \mathrm{A} \text {. } \\ 144.6 \\ 56.4 \\ 125.4 \\ 54.6^{\circ}\end{array} \) Indica el signo de todas las razones trigonométricas de los siguientes ángulos expresados en grados. \( \begin{array}{llll}\text { a. } 120^{\circ} & \text { b. }-70^{\circ} & \text { c. } 256^{\circ} & \text { d. } 800^{\circ} \\ \text { e. } 315^{\circ} & \text { f. } 1200^{\circ} & \text { g. } 55^{\circ} & \text { h. }-460^{\circ}\end{array} \) TAREA DE MAT Demosthar que las siguente (1) \( \operatorname{cotg} \frac{x}{4}=\frac{\operatorname{sen} \frac{x}{2}}{1-\cos \frac{x}{2}} \) A hipotenusa de um triângulo mede 40 cm , e a razão entre os catetos é de \( \frac{3}{4} \). Calcule as medidas dos catetos. Find the component form of \( \mathbf{v} \) given its magnitude and the angle it makes with the positive \( x \)-axis. \[ \begin{array}{l}\text { magnitude } \\ \|\mathbf{v}\|=8 \quad \mathbf{v} \text { in the direction } 3 \mathbf{i}+4 \mathbf{j}\end{array} \] Find the component form of \( \mathbf{v} \) given its magnitude and the angle it makes with the positive \( x \)-axis. \[ \begin{array}{l}\text { magnitude } \\ \qquad \mathbf{v} \|=2 \sqrt{13} \\ \text { angle } \\ \theta=45^{\circ}\end{array} \]
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy