Trigonometry Questions from Jan 01,2025

Browse the Trigonometry Q&A Archive for Jan 01,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
\( \sec ^{6} \theta-\tan ^{6} \theta=1+3 \tan ^{2} \theta \cdot \sec ^{2} \) soln, 26. \( x \) को मान पत्ता लगाउनुहोस् (Solve for \( x \) ): \( 3 \sin 420^{\circ}+x \cos 120^{\circ} \cdot \tan 225^{\circ}=x \cot 120^{\circ} \). Ans: \( x=-9 \) 5. प्रमाणित गर्नुहोस् (Prove that): \( \frac{\tan A-\sec A+1}{\tan A+\sec A-1}=\frac{\cos A}{1+\sin A} \) \( \sin 15+i \cos 15)^{2} \) equals to: \( \frac{\sqrt{3}+i}{2} \) \( \frac{1+\sqrt{3} i}{2} \) \( \left. \begin{array} { l } { \frac { \sin 210 ^ { \circ } \cos 300 ^ { \circ } \tan 240 ^ { \circ } } { \cos 120 ^ { \circ } \tan 150 ^ { \circ } \sin 330 ^ { \circ } } } \\ { [ \sin ( - \theta ) + \cos ( 360 - \theta ) ] [ \cos ( 90 - \theta ) + \frac { \sin \theta } { \tan \theta } ] } \end{array} \right. \) \( 0 / 1^{\star} \quad \begin{array}{l}\text { The general solution of the } \\ \text { equation : } \operatorname{Tan}(\Theta+20)=\operatorname{Cot}(3 \Theta \\ +30)\end{array} \) EXERCICE3: (5 points) 1. Résous dams R, requation \( 2 t^{2}+\sqrt{3} t-3=0 \) 2. Détermine les nombres réels \( A \) et \( B \) tels que pourt tout \( x \in \mathbb{R} \), on ait: \[ \sqrt{3} \cos x+\sin x=A \sin (x+B) \] 3. a. Utilise les résultats des questions 1. et 2. pour résoudre dans l'intervalle ] \( -\pi \); \( \pi \) ] léquation \( (E)=\left(2 \cos ^{2} x+\sqrt{3} \cos x-3\right)(\sqrt{3} \cos x+\sin x-\sqrt{3})=0 \) 4. Reprisente les images des solutions de (E) sur un cercle trigonométrique. 1. Résous dans R, réquation \( 2 t^{2}+\sqrt{3} t-3=0 \) 2. Détermine les nombres réels \( A \) et \( B \) tels que pourt tout \( x \in \mathbb{R} \), on ait: \( \sqrt{3} \cos x+\sin x=A \sin (x+B) \) 3. a Utilise les résultats des questions 1 . ct 2 . pour résoudre dans l'intervalle \( 1-\pi ; \pi \) ] l'équation \( (E) \) : \( \left(2 \cos ^{2} x+\sqrt{3} \cos x-3\right)(\sqrt{3} \cos x+\sin x-\sqrt{3})=0 \) 4. Représente les images des solutions de(E) sur un cercle trigonométrique. \( \tan x \) 3. Soit un angle aigu \( \alpha \) vériliant: \( \sin \alpha+\cos \alpha=\frac{1}{2} \) Calcule : \( \sin \alpha \times \cos \alpha ; \sin ^{3} \alpha+\cos ^{3} \alpha \) et \( \sin ^{4} \alpha+\cos ^{4} \alpha \) 12. Giver that \( \cos A=5 / \) and angle \( A \) is acute, Jin the value of 2 Tan \( A+3 \) sin \( A \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy