Trigonometry Questions from Jan 06,2025

Browse the Trigonometry Q&A Archive for Jan 06,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Solve the following equations for \( 0 \leq x \leq 2 \pi \) (a) \( 3 \sin ^{2} x+2 \sin x-1=0 \) (b) \( 10 \cos ^{2} x+11 \cos x+1=0 \) (c) \( 7 \tan ^{2} x-6 \tan x-1=0 \) (d) \( \sin 2 x=\cos x \) Activity 1 Given: \( f(x)=\cos 2 x \) and \( g(x)=\sin \left(x+60^{\circ}\right) \) for \( x \in\left[-90^{\circ}: 180^{\circ}\right] \) 1.1 Solve for \( x \) if \( f(x)=g(x) \) and \( x \in\left[-90^{\circ} ; 180^{\circ}\right] \). 1.2 Sketch the graphs of \( f \) and \( g \) on the same system of axes for \( x \in\left[-90^{\circ}: 180^{\circ}\right] \). Clearly show ALL intercepts with the axes, points of intersection as well as turning points. Write down the period of \( g\left(\frac{3}{2} x\right) \). Determine \( h \) if \( h(x)=f\left(x-45^{\circ}\right)-1 \). 0. Given \( \cos x=\sin 2 x \), find \( x \) 9. A ladder leans against a wall so that its foot is 2.5 m away from the foot of the wall and its top is 4 m up the way. Calculate the angle it makes with the ground. (b) \( \tan ^{2} \beta\left(1+\frac{1}{\tan ^{2} \beta}\right) \) 1. Simplify the following expressions. (a) \( \frac{\cos ^{2} \alpha}{\sin ^{2} \alpha}\left(\frac{1}{\cos ^{2} \alpha}-1\right) \) Edencice: (3) Des quasions sont inde jendantes. ABC unt riangle rectangle in \( A \) Velque \( A B=4 \) et \( A \widehat{A B C}=60^{\circ} \) calc: la \( B C \) et \( A C \) B) \( A B C \) :int inangle oetangle en \( C \) . tel que \( C B=4 \mathrm{~cm} \) et \( A C=3 \mathrm{~cm} \) colcular sinA \( \hat{A B C} ; \cos \hat{A B C} \) et tan \( \widehat{A B C} \) QUESTION 6 Simplify the following expressions without using a calculator. \( 6.1 \quad \frac{\sin 210^{\circ} \cos 300^{\circ} \tan 240^{\circ}}{\cos 120^{\circ} \tan 150^{\circ} \sin 330^{\circ}} \) \( 6.2 \quad[\sin (-\theta)+\cos (360-\theta)]\left[\cos (90-\theta)+\frac{\sin \theta}{\tan \theta}\right] \) \( 6.3 \quad \) If \( \tan x=m+\frac{1}{m}, 90^{\circ} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator. If \( \tan x=m+\frac{1}{m}, 90^{2} \leq x \leq 270^{\circ} \) and \( m^{2}+\frac{1}{m^{2}}=1 \) Calculate the value of \( x \) without the use of a calculator Simplify the following: \( \begin{array}{ll}\text { (a) } \sin 210^{\circ}-\tan 120^{\circ} \cdot \cos 330^{\circ} & \text { (b) } \frac{\cos 410^{\circ}}{\sin 40^{\circ}} \\ \text { (c) } \tan 240^{\circ} \cdot \cos \left(-210^{\circ}\right)-\sin ^{2} 315^{\circ} & \end{array} \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy