Trigonometry Questions from Jan 18,2025

Browse the Trigonometry Q&A Archive for Jan 18,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Calcule \( Q=\frac{\tan ^{4} 60^{\circ}-\sec ^{4} 45^{\circ}}{\left(\sec 30^{\circ}-\cot 60^{\circ}\right)^{2}} \) Uma escada de 5 metros está encostada em uma parede, formando um ângulo de elevação com o solo. Calcule a altura que a escada atinge na parede utilizando funções trigonométricas inversas. Ejercicio 003 Encontrar el ángulo de desfase entre las senoides \( V_{1}=-10 \cos \left(w t+50^{\circ}\right) \) y \( V_{2}=12 \sin \left(w t-10^{\circ}\right) \) e indicar cuál se adelanta. A partir de la identidad pitagórica, deriva la relación entre \( \cot(x) \), \( \sin(x) \) y \( \cos(x) \). 0) \( \operatorname{tg} 2 x+2 \cos x=0 \rightarrow \) Utilize the half-angle identity to determine \( \cos\left(\frac{3\pi}{4}\right) \). [15] If \( \sin 30^{\circ}=\cos \theta \), where \( \theta \) is an acute angle, then \( \mathrm{m}(\angle \theta)= \) \qquad (a) 10 (b) 30 (c) 45 (d) 60 [15] If \( \sin 30^{\circ}=\cos \theta \), where \( \theta \) is an acute angle, then \( \mathrm{m}(\angle \boldsymbol{\theta})= \) \( \qquad \) (a) 10 (b) 30 (c) 45 (d) 60 [16] In \( \triangle \mathrm{ABC} \), if \( \mathrm{m}(\angle B)=\mathbf{9 0}^{\circ} \), then \( \sin A+\cos C= \) \( \qquad \) (a) \( 2 \sin \mathrm{~A} \) (b) \( 2 \sin \mathrm{C} \) (c) \( 2 \sin b \) (d) \( 2 \cos \mathrm{~A} \) [17] The slope of the straight line which is parallel to \( \boldsymbol{x} \)-axis is \( \qquad \) (a) -1 (b) 0 (c) 1 (d) undefined [18] If the origin point is a centre of a circle of radius 3 unit length, then the point \( \qquad \) belongs to it. (a) \( (1,2) \) (b) \( (-2, \sqrt{5}) \) Using the sum formula for cosine, express \( \cos(a + b) \) in terms of \( \cos a, \cos b, \sin a, \text{ and } \sin b \). Derive an expression for \( \sin(a+b) \) using the sum formulas, where \( a = 60^{\circ} \) and \( b = 45^{\circ} \).
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy