Trigonometry Questions from Jan 18,2025

Browse the Trigonometry Q&A Archive for Jan 18,2025, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Find \( \arctan \left(\tan 3^{*}\right. \) pi / 4) Find \( \arctan \left(\tan 2^{*}\right. \) pi / 3) 5: Find \( \arctan \left(\tan 3^{*}\right. \) pi / 4) 5: Find \( \arctan \left(\tan 2^{*}\right. \) pi / 3) Find \( \arctan \left(\tan 3^{*}\right. \) pi / 4) Find \( \arctan \left(\tan 2^{*}\right. \) pi / 3) Find \( \arctan \left(\tan 3^{*}\right. \) pi / 4) \( : \) Find \( \arctan \left(\tan 2^{*}\right. \) pi / 3\( ) \) Find \( \arccos (\cos 2 * \) pi / 3) Find \( \arccos (\cos (-\mathrm{pi} / 3)) \) Find \( \arcsin (\sin (-\mathrm{pi} / 3)) \) Find \( \arcsin \left(\sin \left(5^{*} \mathrm{pi} / 3\right)\right) \) Find \( \arccos \left(\cos 2^{*} \mathrm{pi} / 3\right) \) (b) If the slope of the straight line \( y+a x+b=0 \) is -3 and passes through ( 1,4 ). then \( \mathrm{a}+\mathrm{b}= \) \( \qquad \) \[ (7,-7,4,-4) \] (C) If \( \frac{-3}{2}, \frac{6}{m} \) are slopes of two parallel straight lines, then \( \mathrm{m}= \) \( \qquad \) \[ (4,6,-4,2) \] If \( A, B \) are two supplementary angles and \( m(\angle A)=m(\angle B) \), then \( m(\angle B)= \) \( \qquad \) \[ (180,90,45,30) \] . If a straight line is parallel to \( y \)-axis and passes through points \( C(k, 4), D(-5,7) \). then \( \mathrm{k}= \) \( \qquad \) \[ (6,3,5,-5) \] (4) The slope of the straight line which makes an angle of measure \( 45^{\circ} \) with the positive direction of X-axis is \( \qquad \) \[ (1,2,0.5,3 \] 9 If \( \sin 2 x=0.5 \), where \( x \) is the measure of an acute angle, then \( x= \) \( \qquad \) . \[ (15,20,60 \] 5i. If \( A B C \) is a right-angled triangle at \( B \) and \( \sin A=\frac{1}{2} \), then \( \cos C= \) \( \qquad \) \[ \left(1, \frac{1}{2}, \frac{\sqrt{3}}{2}\right. \] Choose the correct answer: If \( \tan (2 x-5)=1 \) where \( x \) is the measure of an acute angle, then \( x= \) \( \left(25^{\circ}, 35^{\circ}, 45^{\circ}, 55^{\circ}\right) \) Demuestra la siguiente identidod: \( \operatorname{sen}^{6}+\cos ^{6} x=1-\frac{3}{4} \operatorname{sen}^{2} 2 x \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy