Other Questions from Dec 07,2024

Browse the Other Q&A Archive for Dec 07,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
A matrix \( A \) has the following eigenpairs. Complete the eigenpairs. \( \left(\lambda=\square,\left[\begin{array}{c}3-6 i \\ 1\end{array}\right]\right) \quad\left(\lambda=4-2 i,\left[\begin{array}{l}\square \\ \square\end{array}\right]\right) \) Find the remaining eigenvalue for matrix \( A=\left[\begin{array}{rr}3 & -5 \\ 8 & -9\end{array}\right] \) \( \lambda=-3+2 i \). The matrix \( A=\left[\begin{array}{cc}4 & -2 \\ 1 & 1\end{array}\right] \) has eigenvalue \( \lambda_{1}=3 \) with corresponding eigenvector \( \left[\begin{array}{l}2 \\ 1\end{array}\right] \) and eigenvalue \( \lambda_{2}=2 \) with corresponding eigenvector \( \left[\begin{array}{l}1 \\ 1\end{array}\right] \). Use this information to fill in the following matrices for the diagonalization of \( A \). \( A=P D P^{-1}=\left[\begin{array}{ll}\text { Ex: } 5 & \text { a } \\ \square & \end{array}\right]\left[\begin{array}{cc}\square & 0 \\ 0 & 2\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 2\end{array}\right] \) Find the eigenvalue(s) of the linear transformation \( \mathcal{P}_{2} \rightarrow \mathcal{P}_{2} \) given by \( T(p(x))=p(-x) \) \[ \begin{array}{l}\square \lambda=1 \\ \square \lambda=-1\end{array} \] Use the equation \( A \mathbf{x}=\lambda \mathbf{x} \) to determine which of the following is an eigenpair for the linear transformation \( T: \mathcal{P}_{1} \rightarrow \mathcal{P}_{1} \) given by \( T(a x+b)=(7 a-6 b) x+(4 a-3 b) \) \( \square(\lambda=2,2 x+1) \) \( \square(\lambda=1, x+1) \) \( \square(\lambda=3,3 x+2) \) Find the discrete Fourier transform of the sequence \( x=\langle x(0), x(1), x(2), x(3))= \) \( (1,-1,1,-1) \). Find the Fourier series for the function \( f(x)=|x| \) defined in \( -\pi<x<\pi \). 4. Determine los valores propios \( y \) vectores propios de la matriz \( \mathbb{A} \) dada por \[ \mathbb{A}=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 0 & 1 \\ 4 & -4 & 5\end{array}\right] \] Además, para cada valor propio \( \lambda \) de \( \mathbb{A} \) verifique que la siguiente igualdad se cumple \[ \mathbb{A} x=\lambda x \] Para ello, tome en particular a un vector propio \( x \) de \( \mathbb{A} \) asociado al valor propio \( \lambda \). 5- (a) [Byron-Fuller 3.16] Show that the eigenvalues of \[ M=\left[\begin{array}{ccc}3 & 5 & 8 \\ -6 & -10 & -16 \\ 4 & 7 & 11\end{array}\right] \] are \( \lambda=0,1,3 \), and that the corresponding eigenvectors are \[ \left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right], \quad\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}4 \\ -8 \\ 5\end{array}\right] . \] Construct a diagonalizing matrix \( P \), prove that its inverse exists, compute its inverse, and verify that \( P^{-1} M P \) is diagonal with the eigenvalues on the diagonal. Note that det \( M=0 \). Is it true that any diagonalizable matrix with an eigenvalue equal to zero is singular? (b) What are the kernel and image of \( M \) ? 5- (a) [Byron-Fuller 3.16] Show that the eigenvalues of \[ M=\left[\begin{array}{ccc}3 & 5 & 8 \\ -6 & -10 & -16 \\ 4 & 7 & 11\end{array}\right] \] are \( \lambda=0,1,3 \), and that the corresponding eigenvectors are \[ \left[\begin{array}{c}1 \\ 1 \\ -1\end{array}\right], \quad\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right], \quad \text { and }\left[\begin{array}{c}4 \\ -8 \\ 5\end{array}\right] \] Construct a diagonalizing matrix \( P \), prove that its inverse exists, compute its inverse, and verify that \( P^{-1} M P \) is diagonal with the eigenvalues on the diagonal. Note that det \( M=0 \). Is it true that any diagonalizable matrix with an eigenvalue equal to zero is singular? (b) What are the kernel and image of \( M \) ? 2. Sean \( S=\left\{v_{1}, v_{2}, v_{3}\right\} \) y \( T=\left\{w_{1}, w_{2}, w_{3}\right\} \) bases para \( \mathbb{R}^{3} \) donde \[ v_{1}=(1,0,1), \quad v_{2}=(-1,0,0), \quad v_{3}=(0,1,2) \] \[ w_{1}=(-1,1,0), \quad w_{2}=(1,2,-1), \quad w_{3}=(0,1,0) \] y Además, sea \( v \in \mathbb{R}^{3} \) con \( v=(1,3,8) \). i) Determine el vector de coordenadas de \( v \) con respecto a las bases \( S \) y \( T \) ii) Calule la matriz transición \( P_{S \leftarrow T} \) de la base T a la base \( S \) iii) Verifique que \( [v] S=P_{S \leftarrow T}[v]_{T} \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy