Other Questions from Dec 15,2024

Browse the Other Q&A Archive for Dec 15,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
4. Let \( \theta \in \mathbb{R} \) and define a map \( L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) by \[ L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \] 1 Find all real eigen-values \( \lambda \in \mathbb{R} \) of \( [L]_{\mathcal{E}}^{\mathcal{E}} \), and find all eigen-vectors corresponding to each eigen-values. 5. Let \( \theta \in \mathbb{R} \) and define a map \( L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) by \[ L\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \] Find all real eigen-values \( \lambda \in \mathbb{R} \) of \( [L]_{\mathcal{E}}^{\mathcal{E}} \), and find all eigen-vectors corresponding to each eigen-values. 1. If \( u=3 i+6 j-7 k, v=4 i-5 j+6 k \) and \( w=-2 i+3 j-9 k \) then use the algebra of vectors find the followings \( >(3 u-4 v) \bullet(5 w-2 u) \) \( >(2 \mathrm{v}+3 \mathrm{w}) \bullet(4 \mathrm{u}-3 \mathrm{v}) \) \( >(\mathrm{u}+\mathrm{v}+3 \mathrm{w}) \bullet(\mathrm{u}-\mathrm{v}-2 \mathrm{w}) \) \( >(2 \mathrm{u}+\mathrm{v}) \times(\mathrm{v}-2 \mathrm{w}) \) \( >(\mathrm{w}+\mathrm{u}) \times(\mathrm{w}-\mathrm{u}) \) 1. If \( u=3 i+6 j-7 k, v=4 i-5 j+6 k \) and \( w=-2 i+3 j-9 k \) then use the algebra of vectors find the followings \( >(3 u-4 v) \bullet(5 w-2 u) \) \( >(2 \mathrm{v}+3 \mathrm{w}) \bullet(4 \mathrm{u}-3 \mathrm{v}) \) \( >(\mathrm{u}+\mathrm{v}+3 \mathrm{w}) \bullet(\mathrm{u}-\mathrm{v}-2 \mathrm{w}) \) \( >(2 \mathrm{u}+\mathrm{v}) \times(\mathrm{v}-2 \mathrm{w}) \) \( >(\mathrm{w}+\mathrm{u}) \times(\mathrm{w}-\mathrm{u}) \) 4. Let \( \theta \in \mathbb{R} \) and define a map \( L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) by \[ L\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{c}x \\ y \\ z\end{array}\right) \] 1 Find all real eigen-values \( \lambda \in \mathbb{R} \) of \( [L]_{\mathcal{E}}^{\mathcal{E}} \), and find all eigen-vectors corresponding to each eigen-values. 5. Let \( \theta \in \mathbb{R} \) and define a map \( L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) by \[ L\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right) \] Find all real eigen-values \( \lambda \in \mathbb{R} \) of \( [L]_{\mathcal{E}}^{\mathcal{E}} \), and find all eigen-vectors corresponding to each eigen-values. 4. Let \( \theta \in \mathbb{R} \) and define a map \( L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} \) by \[ L\left(\begin{array}{c}x \\ y \\ z\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta\end{array}\right)\left(\begin{array}{c}x \\ y \\ z\end{array}\right) \] 1 Find all real eigen-values \( \lambda \in \mathbb{R} \) of \( [L]_{\mathcal{E}}^{\mathcal{E}} \), and find all eigen-vectors corresponding to each eigen-values. 3. Let \( \theta \in \mathbb{R} \) and define a map \( L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) by \[ \begin{array}{l}L\binom{x}{y}\end{array}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x}{y} \] Prove that \( \left\{\mathbf{a} \in \mathbb{R}^{2}: L(\mathbf{a})=\mathbf{a}\right\}=\{\mathbf{0}\} \) if \( \theta \notin 2 \pi \mathbb{Z}=\{2 \pi n: n \in \mathbb{Z}\} \) Let a be a nonzero vector in \( \mathbb{R}^{2} \). Define \( \tau_{\mathbf{a}}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \) by \[ \tau_{\mathbf{a}}(\mathbf{x})=-\mathbf{x}+2 \frac{\mathbf{a} \cdot \mathbf{x}}{\mathbf{a} \cdot \mathbf{a}} \mathbf{a} \text {. } \] 2. Let a be a nonzero vector of \( \mathbb{R}^{2} \). Answer the following questions. (i) Show that \( \tau_{\mathbf{a}} \) is a linear map. (ii) Write \( \mathbf{a}=\left(a_{1}, a_{2}\right) \) and let \( \mathbf{b}=\left(-a_{2}, a_{1}\right) \in \mathbb{R}^{2} \). Show that \( \mathcal{B}=\{\mathbf{a}, \mathbf{b}\} \) is a basis for \( \mathbb{R}^{2} \). ¿Qué es un numero adimensional?
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy