Home Math Solver
error msg
  • Algebra
  • Calculus
  • Trigonometry
  • Matrix
  • Differential
  • Integral
  • Trigonometry
  • Letters

Question

\sin\left(x\right)-\cos\left(x\right)=0
Solve the equation
x=\frac{\pi }{4}+k\pi ,k \in \mathbb{Z}
Alternative Form
x=45^{\circ}+180^{\circ} k,k \in \mathbb{Z}
Alternative Form
x\approx 0.785398+k\pi ,k \in \mathbb{Z}
Evaluate
\sin\left(x\right)-\cos\left(x\right)=0
Move the expression to the right side
-\cos\left(x\right)=0-\sin\left(x\right)
Subtract the terms
-\cos\left(x\right)=-\sin\left(x\right)
Divide both sides
\frac{-\cos\left(x\right)}{\sin\left(x\right)}=-1
Divide the terms
More Steps Hide Steps
Evaluate
\frac{-\cos\left(x\right)}{\sin\left(x\right)}
\text{Use }\frac{-a}{b}=\frac{a}{-b}=-\frac{a}{b}\text{ to rewrite the fraction}
-\frac{\cos\left(x\right)}{\sin\left(x\right)}
Rewrite the expression
-\sin^{-1}\left(x\right)\cos\left(x\right)
Rewrite the expression
-\cot\left(x\right)
-\cot\left(x\right)=-1
\text{Multiply both sides of the equation by }-1
-\cot\left(x\right)\left(-1\right)=-\left(-1\right)
Calculate
\cot\left(x\right)=-\left(-1\right)
Multiplying or dividing an even number of negative terms equals a positive
\cot\left(x\right)=1
Use the inverse trigonometric function
x=\operatorname{arccot}\left(1\right)
Calculate
x=\frac{\pi }{4}
Solution
x=\frac{\pi }{4}+k\pi ,k \in \mathbb{Z}
Alternative Form
x=45^{\circ}+180^{\circ} k,k \in \mathbb{Z}
Alternative Form
x\approx 0.785398+k\pi ,k \in \mathbb{Z}
Show Solutions
Hide Solutions
Graph
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy