Home Math Solver
Enter a math problem...
error msg
  • Algebra
  • Calculus
  • Trigonometry
  • Matrix
  • Differential
  • Integral
  • Trigonometry
  • Letters

Question

y=-x^{2}+4x+12
Function
  • Find the vertex

  • Find the axis of symmetry

  • Rewrite in vertex form

  • Evaluate the derivative

  • Find the domain

  • \text{Find the }x\text{-intercept/zero}

  • Find the y-intercept

  • Find the critical numbers

  • Find the local extrema

  • Find the increasing or decreasing interval

  • Find the range

  • Find the vertical asymptotes

  • Find the horizontal asymptotes

  • Find the oblique asymptotes

  • Determine if even, odd or neither

  • Find the stationary points

  • Find the inflection points

More methods Hide more
\left(2,16\right)
Evaluate
y=-x^{2}+4x+12
\text{Find the }x\text{-coordinate of the vertex by substituting a=}-1\text{ and b=}4\text{ into }x\text{ = }-\frac{b}{2a}
x=-\frac{4}{2\left(-1\right)}
\text{Solve the equation for }x
x=2
\text{Find the y-coordinate of the vertex by evaluating the function for }x\text{=}2
y=-2^{2}+4\times 2+12
Calculate
More Steps Hide Steps
Evaluate
-2^{2}+4\times 2+12
Multiply the numbers
-2^{2}+8+12
Evaluate the power
-4+8+12
Add the numbers
16
y=16
Solution
\left(2,16\right)
Show Solutions
Hide Solutions
Testing for symmetry
  • Testing for symmetry about the origin

  • Testing for symmetry about the x-axis

  • Testing for symmetry about the y-axis

\textrm{Not symmetry with respect to the origin}
Evaluate
y=-x^{2}+4x+12
\text{To test if the graph of }y=-x^{2}+4x+12\text{ is symmetry with respect to the origin,substitute -x for x and -y for y}
-y=-\left(-x\right)^{2}+4\left(-x\right)+12
Simplify
More Steps Hide Steps
Evaluate
-\left(-x\right)^{2}+4\left(-x\right)+12
Multiply the numbers
-\left(-x\right)^{2}-4x+12
Rewrite the expression
-x^{2}-4x+12
-y=-x^{2}-4x+12
Change the signs both sides
y=x^{2}+4x-12
Solution
\textrm{Not symmetry with respect to the origin}
Show Solutions
Hide Solutions
Identify the conic
  • Find the standard equation of the parabola

  • Find the vertex of the parabola

  • Find the focus of the parabola

  • Find the directrix of the parabola

More methods Hide more
\left(x-2\right)^{2}=-\left(y-16\right)
Evaluate
y=-x^{2}+4x+12
Swap the sides of the equation
-x^{2}+4x+12=y
Move the constant to the right-hand side and change its sign
-x^{2}+4x=y-12
\text{Multiply both sides of the equation by }-1
\left(-x^{2}+4x\right)\left(-1\right)=\left(y-12\right)\left(-1\right)
Multiply the terms
More Steps Hide Steps
Evaluate
\left(-x^{2}+4x\right)\left(-1\right)
Use the the distributive property to expand the expression
-x^{2}\left(-1\right)+4x\left(-1\right)
Multiplying or dividing an even number of negative terms equals a positive
x^{2}+4x\left(-1\right)
Multiply the numbers
x^{2}-4x
x^{2}-4x=\left(y-12\right)\left(-1\right)
Multiply the terms
More Steps Hide Steps
Evaluate
\left(y-12\right)\left(-1\right)
Apply the distributive property
y\left(-1\right)-12\left(-1\right)
Multiplying or dividing an odd number of negative terms equals a negative
-y-12\left(-1\right)
Simplify
-y+12
x^{2}-4x=-y+12
To complete the square, the same value needs to be added to both sides
x^{2}-4x+4=-y+12+4
\text{Use }a^2-2ab+b^2=(a-b)^2\text{ to factor the expression}
\left(x-2\right)^{2}=-y+12+4
Add the numbers
\left(x-2\right)^{2}=-y+16
Solution
\left(x-2\right)^{2}=-\left(y-16\right)
Show Solutions
Hide Solutions
Solve the equation
\begin{align}&x=2+\sqrt{16-y}\\&x=2-\sqrt{16-y}\end{align}
Evaluate
y=-x^{2}+4x+12
Swap the sides of the equation
-x^{2}+4x+12=y
Move the expression to the left side
-x^{2}+4x+12-y=0
Multiply both sides
x^{2}-4x-12+y=0
\text{Substitute a=}1\text{,b=}-4\text{ and c=}-12+y\text{ into the quadratic formula }x\text{=}\frac{-b\pm\sqrt{b^2-4ac}}{2a}
x=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\left(-12+y\right)}}{2}
Simplify the expression
More Steps Hide Steps
Evaluate
\left(-4\right)^{2}-4\left(-12+y\right)
Multiply the terms
More Steps Hide Steps
Evaluate
4\left(-12+y\right)
Apply the distributive property
-4\times 12+4y
Multiply the numbers
-48+4y
\left(-4\right)^{2}-\left(-48+4y\right)
Rewrite the expression
4^{2}-\left(-48+4y\right)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
4^{2}+48-4y
Evaluate the power
16+48-4y
Add the numbers
64-4y
x=\frac{4\pm \sqrt{64-4y}}{2}
Simplify the radical expression
More Steps Hide Steps
Evaluate
\sqrt{64-4y}
Factor the expression
\sqrt{4\left(16-y\right)}
The root of a product is equal to the product of the roots of each factor
\sqrt{4}\times \sqrt{16-y}
Evaluate the root
More Steps Hide Steps
Evaluate
\sqrt{4}
\text{Write the number in exponential form with the base of }2
\sqrt{2^{2}}
\text{Reduce the index of the radical and exponent with }2
2
2\sqrt{16-y}
x=\frac{4\pm 2\sqrt{16-y}}{2}
\text{Separate the equation into }2\text{ possible cases}
\begin{align}&x=\frac{4+2\sqrt{16-y}}{2}\\&x=\frac{4-2\sqrt{16-y}}{2}\end{align}
Simplify the expression
More Steps Hide Steps
Evaluate
x=\frac{4+2\sqrt{16-y}}{2}
Divide the terms
More Steps Hide Steps
Evaluate
\frac{4+2\sqrt{16-y}}{2}
Rewrite the expression
\frac{2\left(2+\sqrt{16-y}\right)}{2}
Reduce the fraction
2+\sqrt{16-y}
x=2+\sqrt{16-y}
\begin{align}&x=2+\sqrt{16-y}\\&x=\frac{4-2\sqrt{16-y}}{2}\end{align}
Solution
More Steps Hide Steps
Evaluate
x=\frac{4-2\sqrt{16-y}}{2}
Divide the terms
More Steps Hide Steps
Evaluate
\frac{4-2\sqrt{16-y}}{2}
Rewrite the expression
\frac{2\left(2-\sqrt{16-y}\right)}{2}
Reduce the fraction
2-\sqrt{16-y}
x=2-\sqrt{16-y}
\begin{align}&x=2+\sqrt{16-y}\\&x=2-\sqrt{16-y}\end{align}
Show Solutions
Hide Solutions
Rewrite the equation
\begin{align}&r=\frac{-\sin\left(\theta \right)+4\cos\left(\theta \right)+\sqrt{1+63\cos^{2}\left(\theta \right)-4\sin\left(2\theta \right)}}{2\cos^{2}\left(\theta \right)}\\&r=\frac{-\sin\left(\theta \right)+4\cos\left(\theta \right)-\sqrt{1+63\cos^{2}\left(\theta \right)-4\sin\left(2\theta \right)}}{2\cos^{2}\left(\theta \right)}\end{align}
Evaluate
y=-x^{2}+4x+12
Move the expression to the left side
y+x^{2}-4x=12
\text{To convert the equation to polar coordinates,substitute }r\cos\left(\theta \right)\text{ for }x\text{ and }r\sin\left(\theta \right)\text{ for }y
\sin\left(\theta \right)\times r+\left(\cos\left(\theta \right)\times r\right)^{2}-4\cos\left(\theta \right)\times r=12
Factor the expression
\cos^{2}\left(\theta \right)\times r^{2}+\left(\sin\left(\theta \right)-4\cos\left(\theta \right)\right)r=12
Subtract the terms
\cos^{2}\left(\theta \right)\times r^{2}+\left(\sin\left(\theta \right)-4\cos\left(\theta \right)\right)r-12=12-12
Evaluate
\cos^{2}\left(\theta \right)\times r^{2}+\left(\sin\left(\theta \right)-4\cos\left(\theta \right)\right)r-12=0
Solve using the quadratic formula
r=\frac{-\sin\left(\theta \right)+4\cos\left(\theta \right)\pm \sqrt{\left(\sin\left(\theta \right)-4\cos\left(\theta \right)\right)^{2}-4\cos^{2}\left(\theta \right)\left(-12\right)}}{2\cos^{2}\left(\theta \right)}
Simplify
r=\frac{-\sin\left(\theta \right)+4\cos\left(\theta \right)\pm \sqrt{1+63\cos^{2}\left(\theta \right)-4\sin\left(2\theta \right)}}{2\cos^{2}\left(\theta \right)}
Solution
\begin{align}&r=\frac{-\sin\left(\theta \right)+4\cos\left(\theta \right)+\sqrt{1+63\cos^{2}\left(\theta \right)-4\sin\left(2\theta \right)}}{2\cos^{2}\left(\theta \right)}\\&r=\frac{-\sin\left(\theta \right)+4\cos\left(\theta \right)-\sqrt{1+63\cos^{2}\left(\theta \right)-4\sin\left(2\theta \right)}}{2\cos^{2}\left(\theta \right)}\end{align}
Show Solutions
Hide Solutions
Graph
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy