Question
upstudy study bank question image url

3. Найти площадь параллелограмма, построенного на векторах \( (2 ;-3 ; 1) \) и \( (4 ;-1 ; 2) \). Одобрено на заседании кафедры от «17»__ декабря__ 2024 г., протокол №__12/1_

Ask by Clark Martinez. in Russia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Площадь параллелограмма равна \(5\sqrt{5}\) квадратных единиц.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

Чтобы найти площадь параллелограмма, образованного векторами \( \mathbf{a} = (2, -3, 1) \) и \( \mathbf{b} = (4, -1, 2) \), необходимо вычислить модуль векторного произведения этих двух векторов. Для этого сначала найдем координаты векторного произведения: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & -3 & 1 \\ 4 & -1 & 2 \end{vmatrix} = \mathbf{i}((-3) \cdot 2 - 1 \cdot (-1)) - \mathbf{j}(2 \cdot 2 - 1 \cdot 4) + \mathbf{k}(2 \cdot (-1) - (-3) \cdot 4) \] Это упрощается до: \[ = \mathbf{i}(-6 + 1) - \mathbf{j}(4 - 4) + \mathbf{k}(-2 + 12) = \mathbf{i}(-5) - \mathbf{j}(0) + \mathbf{k}(10) = (-5, 0, 10) \] Теперь находим модуль этого вектора: \[ |\mathbf{a} \times \mathbf{b}| = \sqrt{(-5)^2 + 0^2 + 10^2} = \sqrt{25 + 0 + 100} = \sqrt{125} = 5\sqrt{5} \] Таким образом, площадь параллелограмма равна \( 5\sqrt{5} \). --- Параллелограмм — это фигура, у которой противоположные стороны равны и параллельны. Это геометрическая конфигурация, и векторный подход позволяет находить различные его параметры, такие как площадь и периметр, с помощью немногочисленных операций над векторами. На практике, подобные вычисления часто применяются в таких областях, как физика или инженерия, где можно моделировать силы и их воздействие на объекты. Постепенное освоение векторной алгебры — это увлекательный процесс. Но важно обращать внимание на знаки при вычислениях! Забудьте об этом — и вы можете запутаться в результатах. Например, ошибки в знаках в координатах векторов могут сильно повлиять на итоговый ответ как для площади, так и для других важных характеристик параллелограмма. Проверяйте свои вычисления, и все получится!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy