Question
upstudy study bank question image url

6.) \( x^{2}+1=0 \)

Ask by Savage Newton. in Thailand
Jan 26,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The solutions to the equation \( x^{2} + 1 = 0 \) are \( x = i \) and \( x = -i \), where \( i \) is the imaginary unit.

Solution

สมการ \( x^{2} + 1 = 0 \) สามารถแก้ได้ดังนี้: 1. นำ 1 มาลบจากทั้งสองข้างของสมการ: \[ x^{2} = -1 \] 2. หารากที่สองของทั้งสองข้าง: \[ x = \pm \sqrt{-1} \] 3. เนื่องจาก \(\sqrt{-1}\) คือหน่วยจินตภาพ \(i\): \[ x = \pm i \] ดังนั้น รากของสมการ \( x^{2} + 1 = 0 \) คือ \( x = i \) และ \( x = -i \) ซึ่งเป็นจำนวนเชิงซ้อน

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Did you know that the equation \( x^{2} + 1 = 0 \) leads us into the fascinating world of complex numbers? When you rearrange it, you find \( x^{2} = -1 \). This impossibility in the real number system prompts the introduction of "i," the imaginary unit, where \( i^2 = -1 \). Thus, the solutions are \( x = i \) and \( x = -i \), expanding mathematics beyond the limits of real numbers! If you're solving equations like this, a common pitfall is forgetting to consider the realm of complex numbers when negative values lie under a square root. Don't let the 'imaginary' scare you off! Always remember to check for complex solutions in polynomial equations, as they can open up a whole new level of mathematical exploration and creativity.

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy