Answer
**Question 3:**
After the transformations:
1. **Shift 2 units to the left:** \( f(x) = \frac{3}{x - 5} - 4 \)
2. **Shift 3 units up:** \( f(x) = \frac{3}{x - 7} - 1 \)
3. **Shift 1 unit right and 2 units down:** \( f(x) = \frac{3}{x - 8} - 6 \)
**Question 4:**
- **For \( f(x) = -2x^2 - 4x + 6 \):**
- **Vertex:** \( (-1, 8) \)
- **X-Intercepts:** \( (-3, 0) \) and \( (1, 0) \)
- **Y-Intercept:** \( (0, 6) \)
- **Graph:** Downward-opening parabola symmetric about \( x = -1 \)
- **For \( g(x) = -2 \cdot 2^{x-1} + 1 \):**
- **Y-Intercept:** \( (0, 0) \)
- **Horizontal Asymptote:** \( y = 1 \)
- **Graph:** Decreasing exponential curve approaching \( y = 1 \) as \( x \) increases
Solution
### **QUESTION 3**
Given the hyperbola \( f(x) = \frac{3}{x - 7} - 4 \), we'll apply the specified transformations to find the new equations.
#### **3.1 Shift Two Units to the Left**
**Transformation Details:**
- **Horizontal Shift:** Shifting left by 2 units involves replacing \( x \) with \( x + 2 \).
**New Equation:**
\[
f_{\text{new}}(x) = \frac{3}{(x + 2) - 7} - 4 = \frac{3}{x - 5} - 4
\]
---
#### **3.2 Shift Three Units Up**
**Transformation Details:**
- **Vertical Shift:** Shifting up by 3 units involves adding 3 to the entire function.
**New Equation:**
\[
f_{\text{new}}(x) = \frac{3}{x - 7} - 4 + 3 = \frac{3}{x - 7} - 1
\]
---
#### **3.3 Shift One Unit Right and Two Units Down**
**Transformation Details:**
1. **Horizontal Shift:** Shifting right by 1 unit replaces \( x \) with \( x - 1 \).
2. **Vertical Shift:** Shifting down by 2 units involves subtracting 2 from the entire function.
**New Equation:**
\[
f_{\text{new}}(x) = \frac{3}{(x - 1) - 7} - 4 - 2 = \frac{3}{x - 8} - 6
\]
---
### **QUESTION 4**
We are to sketch the graphs of the functions \( f(x) = -2x^2 - 4x + 6 \) and \( g(x) = -2 \cdot 2^{x-1} + 1 \) on the same set of axes, indicating all intercepts, turning points, and asymptotes.
#### **1. Graph of \( f(x) = -2x^2 - 4x + 6 \)**
**Type of Function:** Quadratic (Parabola) opening downward.
**Key Features:**
- **Vertex (Turning Point):**
\[
x = -\frac{b}{2a} = -\frac{-4}{2(-2)} = -1
\]
\[
f(-1) = -2(-1)^2 - 4(-1) + 6 = -2 + 4 + 6 = 8
\]
**Vertex:** \( (-1, 8) \)
- **X-Intercepts:**
Solve \( -2x^2 - 4x + 6 = 0 \):
\[
x^2 + 2x - 3 = 0 \quad \Rightarrow \quad (x + 3)(x - 1) = 0
\]
**X-Intercepts:** \( x = -3 \) and \( x = 1 \) \( \Rightarrow (-3, 0) \) and \( (1, 0) \)
- **Y-Intercept:**
\[
f(0) = -2(0)^2 - 4(0) + 6 = 6
\]
**Y-Intercept:** \( (0, 6) \)
**Graph Characteristics:**
- **Opens downward** due to the negative coefficient of \( x^2 \).
- **Symmetry axis** is the vertical line \( x = -1 \).
#### **2. Graph of \( g(x) = -2 \cdot 2^{x-1} + 1 \)**
**Type of Function:** Exponential function.
**Key Features:**
- **Horizontal Asymptote:**
\[
y = 1
\]
- **Y-Intercept:**
\[
g(0) = -2 \cdot 2^{-1} + 1 = -1 + 1 = 0
\]
**Y-Intercept:** \( (0, 0) \)
- **X-Intercept:**
Set \( g(x) = 0 \):
\[
-2 \cdot 2^{x-1} + 1 = 0 \quad \Rightarrow \quad 2^{x-1} = \frac{1}{2} \quad \Rightarrow \quad x - 1 = -1 \quad \Rightarrow \quad x = 0
\]
**X-Intercept:** \( (0, 0) \)
- **Behavior:**
- Since the coefficient of the exponential term is negative (\(-2\)), the function **decreases** as \( x \) increases.
- **No turning points**; exponential functions are smooth and continuously increasing or decreasing.
**Graph Characteristics:**
- **Approaches the horizontal asymptote** \( y = 1 \) as \( x \to \infty \) and \( y = -\infty \) as \( x \to -\infty \).
- **Passes through the origin** \( (0, 0) \).
#### **Combined Graph Overview**
When sketching both functions on the same set of axes:
- **Quadratic \( f(x) \):**
- Plot the vertex at \( (-1, 8) \).
- Plot the x-intercepts at \( (-3, 0) \) and \( (1, 0) \).
- Plot the y-intercept at \( (0, 6) \).
- Draw a downward-opening parabola symmetric about \( x = -1 \).
- **Exponential \( g(x) \):**
- Plot the point \( (0, 0) \).
- Draw the horizontal asymptote at \( y = 1 \).
- Sketch the decreasing exponential curve approaching \( y = 1 \) as \( x \) increases and descending without bound as \( x \) decreases.
**Intercepts and Asymptotes:**
- **\( f(x) \):**
- **X-Intercepts:** \( (-3, 0) \), \( (1, 0) \)
- **Y-Intercept:** \( (0, 6) \)
- **Vertex:** \( (-1, 8) \)
- **\( g(x) \):**
- **X-Intercept & Y-Intercept:** \( (0, 0) \)
- **Horizontal Asymptote:** \( y = 1 \)
**Turning Points:**
- **\( f(x) \):** One turning point at the vertex \( (-1, 8) \).
- **\( g(x) \):** No turning points.
---
### **Summary**
- **Question 3:** The equations after the specified transformations are:
1. **3.1 Shift Left 2 Units:** \( f(x) = \frac{3}{x - 5} - 4 \)
2. **3.2 Shift Up 3 Units:** \( f(x) = \frac{3}{x - 7} - 1 \)
3. **3.3 Shift Right 1 Unit and Down 2 Units:** \( f(x) = \frac{3}{x - 8} - 6 \)
- **Question 4:**
- **For \( f(x) \):** A downward-opening parabola with vertex at \( (-1, 8) \), x-intercepts at \( (-3, 0) \) and \( (1, 0) \), and y-intercept at \( (0, 6) \).
- **For \( g(x) \):** A decreasing exponential curve passing through \( (0, 0) \), with a horizontal asymptote at \( y = 1 \), and no turning points.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution