1-6 Write the composite function in the form \( f(g(x)) \). [Identify the inner function \( u=g(x) \) and the outer function \( y=f(u) \). Then find the derivative \( d y / d x \) \( \begin{array}{ll}\text { 1. } y=\sqrt[3]{1+4 x} & \text { 2. } y=\left(2 x^{3}+5\right)^{4} \\ \text { 3. } y=\tan \pi x & \text { 4. } y=\sin (\cot x) \\ \text { 5. } y=e^{\sqrt{x}} & \text { 6. } y=\sqrt{2-e^{x}}\end{array} \$ \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To express these functions in the form \( f(g(x)) \), we will identify \( g(x) \) and \( f(u) \), followed by finding the derivative \( \frac{dy}{dx} \). 1. For \( y = \sqrt[3]{1 + 4x} \): - Let \( u = g(x) = 1 + 4x \) and \( f(u) = u^{1/3} \). - \( \frac{dy}{dx} = \frac{1}{3}(1 + 4x)^{-2/3} \cdot 4 = \frac{4}{3(1 + 4x)^{2/3}} \). 2. For \( y = (2x^3 + 5)^4 \): - Let \( u = g(x) = 2x^3 + 5 \) and \( f(u) = u^4 \). - \( \frac{dy}{dx} = 4(2x^3 + 5)^3 \cdot (6x^2) = 24x^2(2x^3 + 5)^3 \). 3. For \( y = \tan(\pi x) \): - Let \( u = g(x) = \pi x \) and \( f(u) = \tan(u) \). - \( \frac{dy}{dx} = \sec^2(\pi x) \cdot \pi = \pi \sec^2(\pi x) \). 4. For \( y = \sin(\cot x) \): - Let \( u = g(x) = \cot x \) and \( f(u) = \sin(u) \). - \( \frac{dy}{dx} = \cos(\cot x) \cdot (-\csc^2 x) = -\cos(\cot x) \csc^2 x \). 5. For \( y = e^{\sqrt{x}} \): - Let \( u = g(x) = \sqrt{x} \) and \( f(u) = e^u \). - \( \frac{dy}{dx} = e^{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} = \frac{e^{\sqrt{x}}}{2\sqrt{x}} \). 6. For \( y = \sqrt{2 - e^x} \): - Let \( u = g(x) = 2 - e^x \) and \( f(u) = \sqrt{u} \). - \( \frac{dy}{dx} = \frac{1}{2\sqrt{2 - e^x}} \cdot (-e^x) = -\frac{e^x}{2\sqrt{2 - e^x}} \).