2. \( 1 \frac{5}{6}+3 \frac{7}{13}= \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
First, let’s convert the mixed numbers into improper fractions. For \( 1 \frac{5}{6} \), this becomes \( \frac{11}{6} \) (since \( 1 \times 6 + 5 = 11 \)). For \( 3 \frac{7}{13} \), this converts to \( \frac{46}{13} \) (because \( 3 \times 13 + 7 = 46 \)). Now we need a common denominator to add \( \frac{11}{6} + \frac{46}{13} \). The least common multiple of 6 and 13 is 78. Converting both fractions: \[ \frac{11}{6} = \frac{143}{78} \quad \text{(multiplying top and bottom by 13)} \] \[ \frac{46}{13} = \frac{108}{78} \quad \text{(multiplying top and bottom by 6)} \] Now we can add the two: \[ \frac{143}{78} + \frac{108}{78} = \frac{251}{78} \] Converting \( \frac{251}{78} \) back to a mixed number gives us \( 3 \frac{17}{78} \) (since \( 251 \div 78 = 3\) remainder 17). So, the final answer is \( 3 \frac{17}{78} \).