Question
upstudy study bank question image url

Calculate the standard enthalpy change for the reaction: \[ 3 \mathrm{C}(s)+4 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(g) \] Given that: \[ \begin{array}{cl} \mathrm{C}_{3} \mathrm{H}_{8}(g)+5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H_{r x n}^{\circ}=-2043 \mathrm{~kJ} / \mathrm{mol} \\ \mathrm{C}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) & \Delta H_{r x n}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol} \\ 2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & \Delta H_{r x n}^{\circ}=-483.6 \mathrm{~kJ} / \mathrm{mol} \end{array} \]

Ask by Conner Cole. in Canada
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The standard enthalpy change for the formation of propane (\( \mathrm{C}_3\mathrm{H}_8 \)) is –104.7 kJ mol⁻¹.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

The Deep Dive

To calculate the standard enthalpy change (\( \Delta H \)) for the reaction \[ 3 \mathrm{C}(s)+4 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(g) \] we can use Hess's law, which states that the total enthalpy change for a chemical reaction is the sum of the enthalpy changes for the individual steps. We have the following reactions and their enthalpy changes: 1. Combustion of propane: \[ \mathrm{C}_{3} \mathrm{H}_{8}(g) + 5 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g) + 4 \mathrm{H}_{2}O(g) \quad \Delta H = -2043 \, \text{kJ} \] 2. Formation of carbon dioxide: \[ \mathrm{C}(s) + \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \quad \Delta H = -393.5 \, \text{kJ} \] 3. Formation of water: \[ 2 \mathrm{H}_{2}(g) + \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2}O(g) \quad \Delta H = -483.6 \, \text{kJ} \] Now, we need to reverse the first reaction to find the enthalpy change for the formation of propane from carbon and hydrogen. Reversing the reaction changes the sign of \( \Delta H \): \[ 3 \mathrm{CO}_{2}(g) + 4 \mathrm{H}_{2}O(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(g) + 5 \mathrm{O}_{2}(g) \quad \Delta H = +2043 \, \text{kJ} \] Next, we will scale the second and third equations as necessary. From the second reaction, for 3 moles of carbon dioxide formed, we have: \[ 3 \times (\mathrm{C}(s) + \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)) = 3 \mathrm{C}(s) + 3 \mathrm{O}_{2}(g) \rightarrow 3 \mathrm{CO}_{2}(g) \quad \Delta H = 3 \times (-393.5) = -1180.5 \, \text{kJ} \] From the third reaction, for 4 moles of water formed, we have: \[ 2 \mathrm{H}_{2}(g) + \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{H}_{2}O(g) \quad \text{(since we need 4 water, multiply by 2)} \] Thus, we scale it: \[ 4 \mathrm{H}_{2}(g) + 2 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{H}_{2}O(g) \quad \Delta H = 2 \times (-483.6) = -967.2 \, \text{kJ} \] Now, let's consider the overall enthalpy change: \[ \Delta H = +2043 \, \text{kJ} - 1180.5 \, \text{kJ} - 967.2 \, \text{kJ} \] Calculating gives: \[ \Delta H = 2043 - 1180.5 - 967.2 = -104.7 \, \text{kJ} \] Thus, the standard enthalpy change for the reaction \[ 3 \mathrm{C}(s) + 4 \mathrm{H}_{2}(g) \rightarrow \mathrm{C}_{3} \mathrm{H}_{8}(g) \] is \[ \Delta H = -104.7 \, \text{kJ} \]

Related Questions

Latest Chemistry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy