Question
\( 1 \leftarrow \quad \) Multiply. Simplify your answer wherever possible. \( 2 x y\left(x^{2}-4 x y+3 y^{2}\right) \)
Ask by Parry Schultz. in the United States
Jan 27,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The simplified expression is \(2x^{3}y - 8x^{2}y^{2} + 6xy^{3}\).
Solution
Calculate or simplify the expression \( 2*x*y*(x^2-4*x*y+3*y^2) \).
Simplify the expression by following steps:
- step0: Solution:
\(2xy\left(x^{2}-4xy+3y^{2}\right)\)
- step1: Rewrite the expression:
\(2\left(x^{2}-4xy+3y^{2}\right)xy\)
- step2: Multiply the expression:
\(2\left(x^{3}y-4x^{2}y^{2}+3y^{3}x\right)\)
- step3: Rearrange the terms:
\(2x^{3}y-8x^{2}y^{2}+6y^{3}x\)
The simplified expression is \(2x^{3}y-8x^{2}y^{2}+6y^{3}x\).
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To simplify \( 2xy(x^{2} - 4xy + 3y^{2}) \), first, distribute \( 2xy \) into each term inside the parentheses: \[ = 2xy \cdot x^{2} - 2xy \cdot 4xy + 2xy \cdot 3y^{2} \] This gives us: \[ = 2x^{3}y - 8x^{2}y^{2} + 6xy^{3} \] Thus, the fully simplified expression is: \[ 2x^{3}y - 8x^{2}y^{2} + 6xy^{3} \]