Question
upstudy study bank question image url

Find the indefinite integral. (Remember the constant of integration.) \[ \int \frac{e^{2 x}}{49+e^{4 x}} d x \]

Ask by Christensen Barrett. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The indefinite integral is \( \frac{1}{14}\arctan\left(\frac{e^{2x}}{7}\right) + C \).

Solution

Calculate the integral \( \int \frac{e^{2x}}{49+e^{4x}} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{e^{2x}}{49+e^{4x}} dx\) - step1: Use the substitution \(dx=\frac{1}{2e^{2x}} dt\) to transform the integral\(:\) \(\int \frac{e^{2x}}{49+e^{4x}}\times \frac{1}{2e^{2x}} dt\) - step2: Simplify: \(\int \frac{1}{98+2\left(e^{2x}\right)^{2}} dt\) - step3: Use the substitution \(t=e^{2x}\) to transform the integral\(:\) \(\int \frac{1}{98+2t^{2}} dt\) - step4: Rewrite the expression: \(\int \frac{1}{2}\times \frac{1}{49+t^{2}} dt\) - step5: Use properties of integrals: \(\frac{1}{2}\times \int \frac{1}{49+t^{2}} dt\) - step6: Evaluate the integral: \(\frac{1}{2}\times \frac{1}{7}\arctan\left(\frac{t}{7}\right)\) - step7: Multiply the terms: \(\frac{1}{14}\arctan\left(\frac{t}{7}\right)\) - step8: Substitute back: \(\frac{1}{14}\arctan\left(\frac{e^{2x}}{7}\right)\) - step9: Add the constant of integral C: \(\frac{1}{14}\arctan\left(\frac{e^{2x}}{7}\right) + C, C \in \mathbb{R}\) The indefinite integral of \( \frac{e^{2x}}{49+e^{4x}} \) with respect to \( x \) is \( \frac{1}{14}\arctan\left(\frac{e^{2x}}{7}\right) + C \), where \( C \) is the constant of integration.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the integral \[ \int \frac{e^{2x}}{49+e^{4x}} \, dx, \] we can start by using a substitution. Let \[ u = e^{2x} \quad \Rightarrow \quad du = 2e^{2x} \, dx \quad \Rightarrow \quad dx = \frac{du}{2u}. \] Then, we rewrite the integral in terms of \( u \): \[ \int \frac{u}{49 + u^2} \cdot \frac{du}{2u} = \int \frac{1}{2(49 + u^2)} \, du. \] Now, the integral simplifies to \[ \frac{1}{2} \int \frac{1}{49 + u^2} \, du. \] The integral \[ \int \frac{1}{a^2 + u^2} \, du = \frac{1}{a} \tan^{-1} \left( \frac{u}{a} \right) + C, \] where \( a = 7 \) (since \( 49 = 7^2 \)). Thus, we get: \[ \frac{1}{2} \cdot \frac{1}{7} \tan^{-1} \left( \frac{u}{7} \right) + C = \frac{1}{14} \tan^{-1} \left( \frac{e^{2x}}{7} \right) + C. \] Therefore, the final answer to the integral is: \[ \int \frac{e^{2x}}{49 + e^{4x}} \, dx = \frac{1}{14} \tan^{-1} \left( \frac{e^{2x}}{7} \right) + C. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy