Question
upstudy study bank question image url

Si \( 5 x=y \) y \( 3 x+8 y=7 \), entonces:

Ask by Weaver Weaver. in Mexico
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Entonces, \( x = \frac{7}{43} \) y \( y = \frac{35}{43} \).

Solution

Para resolver el sistema de ecuaciones: \[ \begin{cases} 5x = y \\ 3x + 8y = 7 \end{cases} \] **Paso 1:** Expresar \( y \) en términos de \( x \) usando la primera ecuación. \[ y = 5x \] **Paso 2:** Sustituir \( y = 5x \) en la segunda ecuación. \[ 3x + 8(5x) = 7 \] \[ 3x + 40x = 7 \] \[ 43x = 7 \] **Paso 3:** Resolver para \( x \). \[ x = \frac{7}{43} \] **Paso 4:** Sustituir el valor de \( x \) en la primera ecuación para encontrar \( y \). \[ y = 5x = 5 \left( \frac{7}{43} \right) = \frac{35}{43} \] **Solución:** \[ x = \frac{7}{43} \quad \text{y} \quad y = \frac{35}{43} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Para resolver el sistema de ecuaciones, primero sustituimos \( y \) en la segunda ecuación. Dado que \( y = 5x \), sustituimos en la ecuación \( 3x + 8y = 7 \): \( 3x + 8(5x) = 7 \) \( 3x + 40x = 7 \) \( 43x = 7 \) \( x = \frac{7}{43} \). Ahora, sustituimos \( x \) de nuevo para encontrar \( y \): \( y = 5\left(\frac{7}{43}\right) = \frac{35}{43} \). Por lo tanto, \( x = \frac{7}{43} \) y \( y = \frac{35}{43} \). ¡Felicidades, has resuelto el sistema!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy