Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
Let's evaluate each of the cases step by step! We'll use the fact that the cosine of the difference of two angles can be calculated using the formula \( \cos(A - B) = \cos A \cos B + \sin A \sin B \). ### Case (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) 1. **(a) \( \cos (A - B) = \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \)** - This yields \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \approx 0.866 \) 2. **(b) \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) \)** - Calculation gives \( \frac{1}{2} - \frac{\sqrt{3}}{2} \approx -0.366 \) 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** - Results in \( \cos(60^{\circ}) \cdot \cos(30^{\circ}) + \sin(60^{\circ}) \cdot \sin(30^{\circ}) \) - Which calculates to \( \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \approx 0.866 \) ### Case (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) 1. **(a) \( \cos (A - B) = \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) \)** - This yields \( \cos(60^{\circ}) = \frac{1}{2} \) 2. **(b) \( \cos A - \cos B = \cos(110^{\circ}) - \cos(50^{\circ}) \)** - Calculation gives approximately \( -0.342 - 0.643 \approx -0.985 \) 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** - Results in \( \cos(110^{\circ}) \cdot \cos(50^{\circ}) + \sin(110^{\circ}) \cdot \sin(50^{\circ}) \) - This will also give \( \frac{1}{2} \) ### Case (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) 1. **(a) \( \cos (A - B) = \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) \)** - This yields \( \cos(90^{\circ}) = 0 \) 2. **(b) \( \cos A - \cos B = \cos(225^{\circ}) - \cos(135^{\circ}) \)** - Calculation gives \( -\frac{\sqrt{2}}{2} - (-\frac{\sqrt{2}}{2}) = 0 \) 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** - Results in \( (-\frac{\sqrt{2}}{2}) \cdot (-\frac{\sqrt{2}}{2}) + \sin(225^{\circ}) \cdot \sin(135^{\circ}) \) - This ultimately adds to \( 1 \) In conclusion, here are the results for each case: - Case (i) results: (0.866, -0.366, 0.866) - Case (ii) results: (0.5, -0.985, 0.5) - Case (iii) results: (0, 0, 1)