Question
upstudy study bank question image url

Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following: (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cdot \cos B+\sin A \cdot \sin B \)

Ask by Dickson Marshall. in South Africa
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the results for each part: - **(a) \( \cos(A - B) \):** - \( A = 60^{\circ}, B = 30^{\circ} \): 0.8660 - \( A = 110^{\circ}, B = 50^{\circ} \): 0.5000 - \( A = 225^{\circ}, B = 135^{\circ} \): 0.0000 - **(b) \( \cos A - \cos B \):** - \( A = 60^{\circ}, B = 30^{\circ} \): -0.3660 - \( A = 110^{\circ}, B = 50^{\circ} \): -0.9848 - \( A = 225^{\circ}, B = 135^{\circ} \): 0.0000 - **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \):** - \( A = 60^{\circ}, B = 30^{\circ} \): 0.8660 - \( A = 110^{\circ}, B = 50^{\circ} \): 0.5000 - \( A = 225^{\circ}, B = 135^{\circ} \): 0.0000

Solution

Let's evaluate each part for the given angle pairs using a calculator. We'll work through each pair \((i)\), \((ii)\), and \((iii)\) separately. ### Given Angle Pairs: 1. **(i)** \( A = 60^{\circ} \), \( B = 30^{\circ} \) 2. **(ii)** \( A = 110^{\circ} \), \( B = 50^{\circ} \) 3. **(iii)** \( A = 225^{\circ} \), \( B = 135^{\circ} \) --- ### Part (a): \( \cos(A - B) \) 1. **(i)** \( \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \approx 0.8660 \) 2. **(ii)** \( \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) = 0.5000 \) 3. **(iii)** \( \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0.0000 \) --- ### Part (b): \( \cos A - \cos B \) 1. **(i)** \[ \cos(60^{\circ}) - \cos(30^{\circ}) = 0.5000 - 0.8660 = -0.3660 \] 2. **(ii)** \[ \cos(110^{\circ}) - \cos(50^{\circ}) \approx (-0.3420) - 0.6428 = -0.9848 \] 3. **(iii)** \[ \cos(225^{\circ}) - \cos(135^{\circ}) \approx (-0.7071) - (-0.7071) = 0.0000 \] --- ### Part (c): \( \cos A \cdot \cos B + \sin A \cdot \sin B \) This expression is equivalent to \( \cos(A - B) \) based on the cosine difference identity. Therefore, the results will be the same as in part (a). 1. **(i)** \( \cos A \cdot \cos B + \sin A \cdot \sin B \approx 0.8660 \) 2. **(ii)** \( \cos A \cdot \cos B + \sin A \cdot \sin B = 0.5000 \) 3. **(iii)** \( \cos A \cdot \cos B + \sin A \cdot \sin B = 0.0000 \) --- ### Summary of Results: | Part | (i) \( A=60^{\circ}, B=30^{\circ} \) | (ii) \( A=110^{\circ}, B=50^{\circ} \) | (iii) \( A=225^{\circ}, B=135^{\circ} \) | |------|-------------------------------------|---------------------------------------|-----------------------------------------| | **a)** \( \cos(A - B) \) | 0.8660 | 0.5000 | 0.0000 | | **b)** \( \cos A - \cos B \) | -0.3660 | -0.9848 | 0.0000 | | **c)** \( \cos A \cos B + \sin A \sin B \) | 0.8660 | 0.5000 | 0.0000 | --- **Note:** All values are rounded to four decimal places.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Let's evaluate each of the cases step by step! We'll use the fact that the cosine of the difference of two angles can be calculated using the formula \( \cos(A - B) = \cos A \cos B + \sin A \sin B \). ### Case (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) 1. **(a) \( \cos (A - B) = \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \)** - This yields \( \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \approx 0.866 \) 2. **(b) \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) \)** - Calculation gives \( \frac{1}{2} - \frac{\sqrt{3}}{2} \approx -0.366 \) 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** - Results in \( \cos(60^{\circ}) \cdot \cos(30^{\circ}) + \sin(60^{\circ}) \cdot \sin(30^{\circ}) \) - Which calculates to \( \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \approx 0.866 \) ### Case (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) 1. **(a) \( \cos (A - B) = \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) \)** - This yields \( \cos(60^{\circ}) = \frac{1}{2} \) 2. **(b) \( \cos A - \cos B = \cos(110^{\circ}) - \cos(50^{\circ}) \)** - Calculation gives approximately \( -0.342 - 0.643 \approx -0.985 \) 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** - Results in \( \cos(110^{\circ}) \cdot \cos(50^{\circ}) + \sin(110^{\circ}) \cdot \sin(50^{\circ}) \) - This will also give \( \frac{1}{2} \) ### Case (iii) \( A=225^{\circ} \) and \( B=135^{\circ} \) 1. **(a) \( \cos (A - B) = \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) \)** - This yields \( \cos(90^{\circ}) = 0 \) 2. **(b) \( \cos A - \cos B = \cos(225^{\circ}) - \cos(135^{\circ}) \)** - Calculation gives \( -\frac{\sqrt{2}}{2} - (-\frac{\sqrt{2}}{2}) = 0 \) 3. **(c) \( \cos A \cdot \cos B + \sin A \cdot \sin B \)** - Results in \( (-\frac{\sqrt{2}}{2}) \cdot (-\frac{\sqrt{2}}{2}) + \sin(225^{\circ}) \cdot \sin(135^{\circ}) \) - This ultimately adds to \( 1 \) In conclusion, here are the results for each case: - Case (i) results: (0.866, -0.366, 0.866) - Case (ii) results: (0.5, -0.985, 0.5) - Case (iii) results: (0, 0, 1)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy