Answer
Here are the simplified forms of the given rational functions:
1. **49.** \( T(x) = \frac{x^{3}}{(x - 1)(x + 1)(x^2 + 1)} \)
2. **50.** \( P(x) = \frac{4x^{2}}{(x - 1)(x^2 + x + 1)} \)
3. **51.** \( Q(x) = \frac{2x + 3}{3x + 1} \) (for \( x \neq 4 \))
4. **52.** \( F(x) = \frac{x + 5}{2x + 5} \) (for \( x \neq -1 \))
5. **53.** \( R(x) = 2x - 1 \) (for \( x \neq -\frac{5}{3} \))
6. **54.** \( R(x) = 2x + 7 \) (for \( x \neq \frac{1}{4} \))
7. **55.** \( G(x) = \frac{(x - 1)(x + 1)(x^2 + 1)}{2} \)
8. **56.** \( F(x) = \frac{(x + 2)(x^2 + 4)}{x} \) (for \( x \neq 0 \) and \( x \neq 2 \))
If you need further assistance or have specific questions about these functions, feel free to ask!
Solution
Sure! Let's simplify and factor each of the given rational functions:
---
### **49.** \( T(x) = \frac{x^{3}}{x^{4} - 1} \)
**Factorization:**
- Denominator: \( x^4 - 1 = (x^2)^2 - 1^2 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \)
**Simplified Form:**
\[ T(x) = \frac{x^{3}}{(x - 1)(x + 1)(x^2 + 1)} \]
---
### **50.** \( P(x) = \frac{4x^{2}}{x^{3} - 1} \)
**Factorization:**
- Denominator: \( x^3 - 1 = (x - 1)(x^2 + x + 1) \)
**Simplified Form:**
\[ P(x) = \frac{4x^{2}}{(x - 1)(x^2 + x + 1)} \]
---
### **51.** \( Q(x) = \frac{2x^{2} - 5x - 12}{3x^{2} - 11x - 4} \)
**Factorization:**
- Numerator: \( 2x^2 - 5x - 12 = (2x + 3)(x - 4) \)
- Denominator: \( 3x^2 - 11x - 4 = (3x + 1)(x - 4) \)
**Simplified Form:**
\[ Q(x) = \frac{(2x + 3)(x - 4)}{(3x + 1)(x - 4)} = \frac{2x + 3}{3x + 1} \quad \text{(for } x \neq 4\text{)} \]
---
### **52.** \( F(x) = \frac{x^{2} + 6x + 5}{2x^{2} + 7x + 5} \)
**Factorization:**
- Numerator: \( x^2 + 6x + 5 = (x + 1)(x + 5) \)
- Denominator: \( 2x^2 + 7x + 5 = (x + 1)(2x + 5) \)
**Simplified Form:**
\[ F(x) = \frac{(x + 1)(x + 5)}{(x + 1)(2x + 5)} = \frac{x + 5}{2x + 5} \quad \text{(for } x \neq -1\text{)} \]
---
### **53.** \( R(x) = \frac{6x^{2} + 7x - 5}{3x + 5} \)
**Factorization:**
- Numerator: \( 6x^2 + 7x - 5 = (2x - 1)(3x + 5) \)
**Simplified Form:**
\[ R(x) = \frac{(2x - 1)(3x + 5)}{3x + 5} = 2x - 1 \quad \text{(for } x \neq -\frac{5}{3}\text{)} \]
---
### **54.** \( R(x) = \frac{8x^{2} + 26x - 7}{4x - 1} \)
**Factorization:**
- Numerator: \( 8x^2 + 26x - 7 = (4x - 1)(2x + 7) \)
**Simplified Form:**
\[ R(x) = \frac{(4x - 1)(2x + 7)}{4x - 1} = 2x + 7 \quad \text{(for } x \neq \frac{1}{4}\text{)} \]
---
### **55.** \( G(x) = \frac{x^{4} - 1}{2} \)
**Factorization:**
- Numerator: \( x^4 - 1 = (x^2)^2 - 1^2 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \)
**Simplified Form:**
\[ G(x) = \frac{(x - 1)(x + 1)(x^2 + 1)}{2} \]
---
### **56.** \( F(x) = \frac{x^{4} - 16}{x^{2} - 2x} \)
**Factorization:**
- Numerator: \( x^4 - 16 = (x^2)^2 - 4^2 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4) \)
- Denominator: \( x^2 - 2x = x(x - 2) \)
**Simplified Form:**
\[ F(x) = \frac{(x - 2)(x + 2)(x^2 + 4)}{x(x - 2)} = \frac{(x + 2)(x^2 + 4)}{x} \quad \text{(for } x \neq 0 \text{ and } x \neq 2\text{)} \]
---
If you have any specific questions or need further assistance with these functions, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution