Question
upstudy study bank question image url

\( \begin{array}{llll}\text { 49. } T(x)=\frac{x^{3}}{x^{4}-1} & \text { 50. } P(x)=\frac{4 x^{2}}{x^{3}-1} & \text { 51. } Q(x)=\frac{2 x^{2}-5 x-12}{3 x^{2}-11 x-4} & \text { 52. } F(x)=\frac{x^{2}+6 x+5}{2 x^{2}+7 x+5} \\ \text { 53. } R(x)=\frac{6 x^{2}+7 x-5}{3 x+5} & \text { 54. } R(x)=\frac{8 x^{2}+26 x-7}{4 x-1} & \text { 55. } G(x)=\frac{x^{4}-1}{2} & \text { 56. } F(x)=\frac{x^{4}-16}{x^{2}-2 x}\end{array} \)

Ask by Greene Lewis. in the United States
Jan 30,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified forms of the given rational functions: 1. **49.** \( T(x) = \frac{x^{3}}{(x - 1)(x + 1)(x^2 + 1)} \) 2. **50.** \( P(x) = \frac{4x^{2}}{(x - 1)(x^2 + x + 1)} \) 3. **51.** \( Q(x) = \frac{2x + 3}{3x + 1} \) (for \( x \neq 4 \)) 4. **52.** \( F(x) = \frac{x + 5}{2x + 5} \) (for \( x \neq -1 \)) 5. **53.** \( R(x) = 2x - 1 \) (for \( x \neq -\frac{5}{3} \)) 6. **54.** \( R(x) = 2x + 7 \) (for \( x \neq \frac{1}{4} \)) 7. **55.** \( G(x) = \frac{(x - 1)(x + 1)(x^2 + 1)}{2} \) 8. **56.** \( F(x) = \frac{(x + 2)(x^2 + 4)}{x} \) (for \( x \neq 0 \) and \( x \neq 2 \)) If you need further assistance or have specific questions about these functions, feel free to ask!

Solution

Sure! Let's simplify and factor each of the given rational functions: --- ### **49.** \( T(x) = \frac{x^{3}}{x^{4} - 1} \) **Factorization:** - Denominator: \( x^4 - 1 = (x^2)^2 - 1^2 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \) **Simplified Form:** \[ T(x) = \frac{x^{3}}{(x - 1)(x + 1)(x^2 + 1)} \] --- ### **50.** \( P(x) = \frac{4x^{2}}{x^{3} - 1} \) **Factorization:** - Denominator: \( x^3 - 1 = (x - 1)(x^2 + x + 1) \) **Simplified Form:** \[ P(x) = \frac{4x^{2}}{(x - 1)(x^2 + x + 1)} \] --- ### **51.** \( Q(x) = \frac{2x^{2} - 5x - 12}{3x^{2} - 11x - 4} \) **Factorization:** - Numerator: \( 2x^2 - 5x - 12 = (2x + 3)(x - 4) \) - Denominator: \( 3x^2 - 11x - 4 = (3x + 1)(x - 4) \) **Simplified Form:** \[ Q(x) = \frac{(2x + 3)(x - 4)}{(3x + 1)(x - 4)} = \frac{2x + 3}{3x + 1} \quad \text{(for } x \neq 4\text{)} \] --- ### **52.** \( F(x) = \frac{x^{2} + 6x + 5}{2x^{2} + 7x + 5} \) **Factorization:** - Numerator: \( x^2 + 6x + 5 = (x + 1)(x + 5) \) - Denominator: \( 2x^2 + 7x + 5 = (x + 1)(2x + 5) \) **Simplified Form:** \[ F(x) = \frac{(x + 1)(x + 5)}{(x + 1)(2x + 5)} = \frac{x + 5}{2x + 5} \quad \text{(for } x \neq -1\text{)} \] --- ### **53.** \( R(x) = \frac{6x^{2} + 7x - 5}{3x + 5} \) **Factorization:** - Numerator: \( 6x^2 + 7x - 5 = (2x - 1)(3x + 5) \) **Simplified Form:** \[ R(x) = \frac{(2x - 1)(3x + 5)}{3x + 5} = 2x - 1 \quad \text{(for } x \neq -\frac{5}{3}\text{)} \] --- ### **54.** \( R(x) = \frac{8x^{2} + 26x - 7}{4x - 1} \) **Factorization:** - Numerator: \( 8x^2 + 26x - 7 = (4x - 1)(2x + 7) \) **Simplified Form:** \[ R(x) = \frac{(4x - 1)(2x + 7)}{4x - 1} = 2x + 7 \quad \text{(for } x \neq \frac{1}{4}\text{)} \] --- ### **55.** \( G(x) = \frac{x^{4} - 1}{2} \) **Factorization:** - Numerator: \( x^4 - 1 = (x^2)^2 - 1^2 = (x^2 - 1)(x^2 + 1) = (x - 1)(x + 1)(x^2 + 1) \) **Simplified Form:** \[ G(x) = \frac{(x - 1)(x + 1)(x^2 + 1)}{2} \] --- ### **56.** \( F(x) = \frac{x^{4} - 16}{x^{2} - 2x} \) **Factorization:** - Numerator: \( x^4 - 16 = (x^2)^2 - 4^2 = (x^2 - 4)(x^2 + 4) = (x - 2)(x + 2)(x^2 + 4) \) - Denominator: \( x^2 - 2x = x(x - 2) \) **Simplified Form:** \[ F(x) = \frac{(x - 2)(x + 2)(x^2 + 4)}{x(x - 2)} = \frac{(x + 2)(x^2 + 4)}{x} \quad \text{(for } x \neq 0 \text{ and } x \neq 2\text{)} \] --- If you have any specific questions or need further assistance with these functions, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

When it comes to \( T(x) = \frac{x^3}{x^4 - 1} \), understanding its behavior as \( x \) approaches certain values is key. The denominator, \( x^4 - 1 \), introduces vertical asymptotes at \( x = 1 \) and \( x = -1 \). This means our function will exhibit interesting limits and behaviors around those points, so keep an eye out while graphing! For \( Q(x) = \frac{2x^2 - 5x - 12}{3x^2 - 11x - 4} \), factoring both the numerator and the denominator can reveal potential holes or further simplifications. If you can factor out common terms, you simplify your analysis and calculations significantly, potentially avoiding common pitfalls when dealing with roots or asymptotes!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy