Question
upstudy study bank question image url

195. \( \sqrt{\left[\left(\frac{2}{5}-\frac{1}{15}\right)^{2}:\left(\frac{3}{10}+\frac{3}{2}\right)+\frac{1}{9}\right]+\frac{2}{81}}+\sqrt{\left[\left(\frac{9}{10} \times \frac{2}{3}+\frac{1}{5}\right)-\left(1-\frac{1}{2^{2}}\right)\right] \times \frac{10}{18}} \)

Ask by Mccoy Ruiz. in Italy
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Il valore numerico dell'espressione è \( \frac{11}{18} \) o \( 0.6\dot{1} \).

Solution

Per semplificare l'espressione data, possiamo iniziare a semplificare i numeri all'interno delle parentesi quadrate. Dopo aver semplificato i numeri all'interno delle parentesi quadrate, possiamo procedere a semplificare l'espressione completa. Infine, possiamo calcolare il valore numerico dell'espressione semplificata. Calculate the value by following steps: - step0: Calculate: \(\sqrt{\left(\left(\frac{2}{5}-\frac{1}{15}\right)^{2}\div \left(\frac{3}{10}+\frac{3}{2}\right)+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\left(\frac{9}{10}\times \frac{2}{3}+\frac{1}{5}\right)-\left(1-\frac{1}{2^{2}}\right)\right)\times \frac{10}{18}}\) - step1: Subtract the numbers: \(\sqrt{\left(\left(\frac{1}{3}\right)^{2}\div \left(\frac{3}{10}+\frac{3}{2}\right)+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\left(\frac{9}{10}\times \frac{2}{3}+\frac{1}{5}\right)-\left(1-\frac{1}{2^{2}}\right)\right)\times \frac{10}{18}}\) - step2: Add the numbers: \(\sqrt{\left(\left(\frac{1}{3}\right)^{2}\div \frac{9}{5}+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\left(\frac{9}{10}\times \frac{2}{3}+\frac{1}{5}\right)-\left(1-\frac{1}{2^{2}}\right)\right)\times \frac{10}{18}}\) - step3: Multiply the numbers: \(\sqrt{\left(\left(\frac{1}{3}\right)^{2}\div \frac{9}{5}+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\left(\frac{3}{5}+\frac{1}{5}\right)-\left(1-\frac{1}{2^{2}}\right)\right)\times \frac{10}{18}}\) - step4: Add the numbers: \(\sqrt{\left(\left(\frac{1}{3}\right)^{2}\div \frac{9}{5}+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\frac{4}{5}-\left(1-\frac{1}{2^{2}}\right)\right)\times \frac{10}{18}}\) - step5: Subtract the numbers: \(\sqrt{\left(\left(\frac{1}{3}\right)^{2}\div \frac{9}{5}+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\frac{4}{5}-\frac{3}{4}\right)\times \frac{10}{18}}\) - step6: Divide the terms: \(\sqrt{\left(\frac{5}{81}+\frac{1}{9}\right)+\frac{2}{81}}+\sqrt{\left(\frac{4}{5}-\frac{3}{4}\right)\times \frac{10}{18}}\) - step7: Add the numbers: \(\sqrt{\frac{14}{81}+\frac{2}{81}}+\sqrt{\left(\frac{4}{5}-\frac{3}{4}\right)\times \frac{10}{18}}\) - step8: Subtract the numbers: \(\sqrt{\frac{14}{81}+\frac{2}{81}}+\sqrt{\frac{1}{20}\times \frac{10}{18}}\) - step9: Reduce the fraction: \(\sqrt{\frac{14}{81}+\frac{2}{81}}+\sqrt{\frac{1}{20}\times \frac{5}{9}}\) - step10: Add the numbers: \(\sqrt{\frac{16}{81}}+\sqrt{\frac{1}{20}\times \frac{5}{9}}\) - step11: Multiply the numbers: \(\sqrt{\frac{16}{81}}+\sqrt{\frac{1}{36}}\) - step12: Simplify the root: \(\frac{4}{9}+\sqrt{\frac{1}{36}}\) - step13: Simplify the root: \(\frac{4}{9}+\frac{1}{6}\) - step14: Reduce fractions to a common denominator: \(\frac{4\times 2}{9\times 2}+\frac{3}{6\times 3}\) - step15: Multiply the numbers: \(\frac{4\times 2}{18}+\frac{3}{6\times 3}\) - step16: Multiply the numbers: \(\frac{4\times 2}{18}+\frac{3}{18}\) - step17: Transform the expression: \(\frac{4\times 2+3}{18}\) - step18: Multiply the numbers: \(\frac{8+3}{18}\) - step19: Add the numbers: \(\frac{11}{18}\) Il valore numerico dell'espressione data è \( \frac{11}{18} \) o \( 0.6\dot{1} \).

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Let's solve the expression step by step. First, we simplify the components inside the square roots starting with the first part: 1. Compute \( \frac{2}{5} - \frac{1}{15} \): - To subtract these fractions, we need a common denominator. The least common multiple of 5 and 15 is 15. - Convert \( \frac{2}{5} \) to have a denominator of 15: \( \frac{2}{5} = \frac{6}{15} \) - Now perform the subtraction: \( \frac{6}{15} - \frac{1}{15} = \frac{5}{15} = \frac{1}{3} \) 2. Now square this result: \( \left(\frac{1}{3}\right)^{2} = \frac{1}{9} \) 3. Compute \( \frac{3}{10} + \frac{3}{2} \): - The least common multiple of 10 and 2 is 10. - Convert \( \frac{3}{2} \) to have a denominator of 10: \( \frac{3}{2} = \frac{15}{10} \) - Now perform the addition: \( \frac{3}{10} + \frac{15}{10} = \frac{18}{10} = \frac{9}{5} \) 4. Now deal with the division: We have \( \frac{1}{9} : \frac{9}{5} \), which is equivalent to multiplying by the reciprocal: \( \frac{1}{9} \times \frac{5}{9} = \frac{5}{81} \) 5. Add \( \frac{1}{9} \) to \( \frac{5}{81} \): - Again, we need a common denominator. The least common multiple of 9 and 81 is 81. - Convert \( \frac{1}{9} \) to have a denominator of 81: \( \frac{1}{9} = \frac{9}{81} \) - Now perform the addition: \( \frac{5}{81} + \frac{9}{81} = \frac{14}{81} \) 6. Finally, add \( \frac{2}{81} \): \( \frac{14}{81} + \frac{2}{81} = \frac{16}{81} \) Now we have: \[ \sqrt{\frac{16}{81}} = \frac{4}{9} \] Now let's calculate the second component: 1. Compute \( \frac{9}{10} \times \frac{2}{3} \): \( \frac{9 \times 2}{10 \times 3} = \frac{18}{30} = \frac{3}{5} \) 2. Now compute \( 1 - \frac{1}{2^{2}} \): \( \frac{1}{2^{2}} = \frac{1}{4} \) and thus \( 1 - \frac{1}{4} = \frac{3}{4} \) 3. Now perform the subtraction: \( \frac{3}{5} - \frac{3}{4} \) - The least common multiple of 5 and 4 is 20. - Convert \( \frac{3}{5} \) to have a denominator of 20: \( \frac{3}{5} = \frac{12}{20} \) - Convert \( \frac{3}{4} \) to have a denominator of 20: \( \frac{3}{4} = \frac{15}{20} \) - Perform the subtraction: \( \frac{12}{20} - \frac{15}{20} = \frac{-3}{20} \) 4. Now multiply by \( \frac{10}{18} \): \( \frac{-3}{20} \times \frac{10}{18} = \frac{-30}{360} = -\frac{1}{12} \) 5. Now we need to take the square root. Since square root of a negative number is not real, we can write this as: \( \sqrt{-\frac{1}{12}} \) which indicates the presence of imaginary numbers. However, the context of the problem primarily seems to indicate this may not have been intended. Assuming we handle it in this context, efforts may often yield that solutions converge to either

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy