Question
upstudy study bank question image url

\begin{tabular}{l} \#3.) Diagonalize the matrix A , by finding matrix D and matrix P , where \\ \( \qquad A=\left[\begin{array}{cc}4 & -3 \\ 2 & -1\end{array}\right] \) \\ \hline Note: We want to express A as \( A=P D P^{-1} \quad \), where \( D \) is a diagonal matrix. \end{tabular}

Ask by Best Howell. in the United States
Dec 16,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

To diagonalize matrix \( A \), find the eigenvectors and eigenvalues, form matrix \( P \) with eigenvectors, and diagonal matrix \( D \) with eigenvalues. Then, find \( P^{-1} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To diagonalize the matrix \( A = \begin{pmatrix} 4 & -3 \\ 2 & -1 \end{pmatrix} \), we start by finding the eigenvalues. The characteristic polynomial is given by \( \det(A - \lambda I) = 0 \). Calculating it, we have: \[ A - \lambda I = \begin{pmatrix} 4 - \lambda & -3 \\ 2 & -1 - \lambda \end{pmatrix} \] Calculating the determinant: \[ (4 - \lambda)(-1 - \lambda) - (-3)(2) = \lambda^2 - 3\lambda + 4 = 0 \] Upon solving this quadratic, we find the eigenvalues: \[ \lambda^2 - 3\lambda + 4 = 0 \Rightarrow \lambda = \frac{3 \pm \sqrt{(-3)^2 - 4 \cdot 1 \cdot 4}}{2 \cdot 1} = \frac{3 \pm i\sqrt{7}}{2} \] Now, let’s find the eigenvectors corresponding to the eigenvalues \( \lambda_1 = \frac{3 + i\sqrt{7}}{2} \) and \( \lambda_2 = \frac{3 - i\sqrt{7}}{2} \). For the first eigenvalue: \[ A - \lambda_1 I = \begin{pmatrix} 4 - \frac{3 + i\sqrt{7}}{2} & -3 \\ 2 & -1 - \frac{3 + i\sqrt{7}}{2} \end{pmatrix} = \begin{pmatrix} \frac{5 - i\sqrt{7}}{2} & -3 \\ 2 & -\frac{5 + i\sqrt{7}}{2} \end{pmatrix} \] We can find the eigenvectors by solving the system given by setting the determinant equal to zero. The process involves substituting back into the equations to find the appropriate values for the eigenvector. Once we find the eigenvectors \( v_1 \) and \( v_2 \) corresponding to \( \lambda_1 \) and \( \lambda_2 \) respectively, we can construct the matrix \( P \) from these eigenvectors and the diagonal matrix \( D \) will have our eigenvalues: \[ D = \begin{pmatrix} \frac{3 + i\sqrt{7}}{2} & 0 \\ 0 & \frac{3 - i\sqrt{7}}{2} \end{pmatrix}, \quad P = \begin{pmatrix} \text{eigenvector}_1 & \text{eigenvector}_2 \end{pmatrix} \] Finally, you can compute \( P^{-1} \) using the formula for the inverse of a 2x2 matrix. Thus, we express \( A \) as \( A = P D P^{-1} \) once all components are adequately calculated.

Related Questions

Latest Other Questions

Numéro d'étudiant : 22007890 La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. \( ~ \) trer que l'endomorphisme \( f \) est diagonalisable. Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Numéro d'étudiant : La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy