Answer
When \( y = 1 \), the inequality holds true. However, when \( y = 1.5 \) and \( y = 2 \), the inequality does not hold. This confirms that the solution set is \( y < 1.5 \).
Solution
To verify that the solution set for the inequality \( 4(2y + 3) - 5y < 18 - y \) is correct, we'll substitute the given values of \( y \) into the inequality and check whether the inequality holds true.
### Step 1: Simplify the Inequality
Before substituting, it's helpful to simplify the inequality:
\[
\begin{align*}
4(2y + 3) - 5y &< 18 - y \\
8y + 12 - 5y &< 18 - y \\
3y + 12 &< 18 - y \\
3y + y + 12 &< 18 \quad (\text{Add } y \text{ to both sides}) \\
4y + 12 &< 18 \\
4y &< 6 \quad (\text{Subtract } 12 \text{ from both sides}) \\
y &< 1.5 \quad (\text{Divide both sides by } 4)
\end{align*}
\]
**Solution Set:** \( y < 1.5 \)
### Step 2: Substitute the Given Values
Let's substitute each value of \( y \) into the original inequality to verify whether it satisfies \( y < 1.5 \).
#### i. Substitute \( y = 1 \)
\[
\begin{align*}
4(2(1) + 3) - 5(1) &< 18 - 1 \\
4(2 + 3) - 5 &< 17 \\
4(5) - 5 &< 17 \\
20 - 5 &< 17 \\
15 &< 17 \quad \text{✅ True}
\end{align*}
\]
**Conclusion:** \( y = 1 \) satisfies the inequality.
#### ii. Substitute \( y = 1.5 \)
\[
\begin{align*}
4(2(1.5) + 3) - 5(1.5) &< 18 - 1.5 \\
4(3 + 3) - 7.5 &< 16.5 \\
4(6) - 7.5 &< 16.5 \\
24 - 7.5 &< 16.5 \\
16.5 &< 16.5 \quad \text{❌ False}
\end{align*}
\]
**Conclusion:** \( y = 1.5 \) does **not** satisfy the inequality since \( 16.5 \) is not less than \( 16.5 \).
#### iii. Substitute \( y = 2 \)
\[
\begin{align*}
4(2(2) + 3) - 5(2) &< 18 - 2 \\
4(4 + 3) - 10 &< 16 \\
4(7) - 10 &< 16 \\
28 - 10 &< 16 \\
18 &< 16 \quad \text{❌ False}
\end{align*}
\]
**Conclusion:** \( y = 2 \) does **not** satisfy the inequality.
### Step 3: Summary
- **\( y = 1 \):** Satisfies \( y < 1.5 \) (True)
- **\( y = 1.5 \):** Does **not** satisfy \( y < 1.5 \) (Boundary case, False)
- **\( y = 2 \):** Does **not** satisfy \( y < 1.5 \) (False)
These substitutions confirm that the solution set \( y < 1.5 \) is correct.
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution