\( \lim _ { ( x , y ) \rightarrow ( 2,1 ) } \frac { 5 - x y } { x ^ { 2 } - 6 y ^ { 2 } } \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To evaluate the limit \( \lim _ { ( x , y ) \rightarrow ( 2,1 ) } \frac { 5 - x y } { x ^ { 2 } - 6 y ^ { 2 } } \), we first substitute \( x = 2 \) and \( y = 1 \): 1. Substitute: \[ xy = 2 \cdot 1 = 2 \implies 5 - xy = 5 - 2 = 3 \] \[ x^2 = 2^2 = 4, \quad 6y^2 = 6 \cdot 1^2 = 6 \implies x^2 - 6y^2 = 4 - 6 = -2 \] 2. Now substituting these values into the limit expression gives: \[ \frac{5 - xy}{x^2 - 6y^2} = \frac{3}{-2} = -\frac{3}{2} \] Thus, the limit is: \[ \lim _ { ( x , y ) \rightarrow ( 2,1 ) } \frac { 5 - x y } { x ^ { 2 } - 6 y ^ { 2 } } = -\frac{3}{2} \]