Question
upstudy study bank question image url

Solve the following rational inequality \( \frac{x-3}{x^{2}-36}>0 \). Give your answer using interval notation.

Ask by Newton Mullins. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The solution is \( x \in (-6,3) \cup (6,+\infty) \).

Solution

Solve the equation \( \frac{x-3}{x^{2}-36}>0 \). Solve the inequality by following steps: - step0: Solve the inequality by testing the values in the interval: \(\frac{x-3}{x^{2}-36}>0\) - step1: Find the domain: \(\frac{x-3}{x^{2}-36}>0,x \in \left(-\infty,-6\right)\cup \left(-6,6\right)\cup \left(6,+\infty\right)\) - step2: Set the numerator and denominator of \(\frac{x-3}{x^{2}-36}\) equal to 0\(:\) \(\begin{align}&x-3=0\\&x^{2}-36=0\end{align}\) - step3: Calculate: \(\begin{align}&x=3\\&x=6\\&x=-6\end{align}\) - step4: Determine the test intervals: \(\begin{align}&x<-6\\&-66\end{align}\) - step5: Choose a value: \(\begin{align}&x_{1}=-7\\&x_{2}=-2\\&x_{3}=5\\&x_{4}=7\end{align}\) - step6: Test the chosen value: \(\begin{align}&x<-6\textrm{ }\textrm{is not a solution}\\&-66\textrm{ }\textrm{is the solution}\end{align}\) - step7: The final solution is \(x \in \left(-6,3\right)\cup \left(6,+\infty\right):\) \(x \in \left(-6,3\right)\cup \left(6,+\infty\right)\) - step8: Check if the solution is in the defined range: \(x \in \left(-6,3\right)\cup \left(6,+\infty\right),x \in \left(-\infty,-6\right)\cup \left(-6,6\right)\cup \left(6,+\infty\right)\) - step9: Find the intersection: \(x \in \left(-6,3\right)\cup \left(6,+\infty\right)\) The solution to the rational inequality \( \frac{x-3}{x^{2}-36}>0 \) is \( x \in (-6,3) \cup (6,+\infty) \) in interval notation.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To solve the rational inequality \( \frac{x-3}{x^{2}-36}>0 \), we first need to factor the denominator. The expression \( x^{2}-36 \) can be factored as \( (x-6)(x+6) \). Thus, our inequality becomes: \[ \frac{x-3}{(x-6)(x+6)} > 0 \] Next, we identify the critical points where the numerator and denominator are zero: 1. Numerator: \( x - 3 = 0 \) gives \( x = 3 \) 2. Denominator: \( (x-6)(x+6) = 0 \) gives \( x = 6 \) and \( x = -6 \) The critical points are \( x = -6, 3, 6 \). We will now test the intervals formed by these points: \( (-\infty, -6) \), \( (-6, 3) \), \( (3, 6) \), and \( (6, \infty) \). 1. **Interval \( (-\infty, -6) \)**: Choose \( x = -7 \): \[ \frac{-7-3}{(-7-6)(-7+6)} = \frac{-10}{(-13)(-1)} = \frac{-10}{13} < 0 \] 2. **Interval \( (-6, 3) \)**: Choose \( x = 0 \): \[ \frac{0-3}{(0-6)(0+6)} = \frac{-3}{(-6)(6)} = \frac{-3}{-36} = \frac{1}{12} > 0 \] 3. **Interval \( (3, 6) \)**: Choose \( x = 5 \): \[ \frac{5-3}{(5-6)(5+6)} = \frac{2}{(-1)(11)} = \frac{2}{-11} < 0 \] 4. **Interval \( (6, \infty) \)**: Choose \( x = 7 \): \[ \frac{7-3}{(7-6)(7+6)} = \frac{4}{(1)(13)} = \frac{4}{13} > 0 \] Now, we summarize the signs for each interval: - \( (-\infty, -6) \): negative - \( (-6, 3) \): positive - \( (3, 6) \): negative - \( (6, \infty) \): positive The inequality \( \frac{x-3}{(x-6)(x+6)} > 0 \) holds true in the intervals \( (-6, 3) \) and \( (6, \infty) \). Lastly, we check the critical points: - At \( x = -6 \) and \( x = 6 \), the expression is undefined. - At \( x = 3 \), the expression is zero (not included). Thus, the solution in interval notation is: \[ (-6, 3) \cup (6, \infty) \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy